利用机器学习提高生物质催化热解的生物油产量

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
Xiangmeng Chen , Alireza Shafizadeh , Hossein Shahbeik , Mohammad Hossein Nadian , Milad Golvirdizadeh , Wanxi Peng , Su Shiung Lam , Meisam Tabatabaei , Mortaza Aghbashlo
{"title":"利用机器学习提高生物质催化热解的生物油产量","authors":"Xiangmeng Chen ,&nbsp;Alireza Shafizadeh ,&nbsp;Hossein Shahbeik ,&nbsp;Mohammad Hossein Nadian ,&nbsp;Milad Golvirdizadeh ,&nbsp;Wanxi Peng ,&nbsp;Su Shiung Lam ,&nbsp;Meisam Tabatabaei ,&nbsp;Mortaza Aghbashlo","doi":"10.1016/j.rser.2024.115099","DOIUrl":null,"url":null,"abstract":"<div><div>This study leverages machine learning technology, coupled with an evolutionary algorithm, to forecast and optimize the distribution and composition of products from <em>in-situ</em> biomass catalytic pyrolysis. Among the four machine learning models employed, the ensemble learning model emerged as the frontrunner, demonstrating superior prediction performance (R<sup>2</sup> &gt; 0.89, RMSE &lt;0.03, and MAE &lt;0.01) compared to generalized additive, support vector regressor, and artificial neural network models. Multi-objective optimization results favored catalyst-to-biomass ratios near unity for bio-oil production, with optimal catalyst acid site content ranging from 0.04 to 2.49 mmol/g for various bio-oil applications. For energy applications, the optimal parameters yielded a bio-oil with 63.36 wt% hydrocarbon content and a bio-oil yield of 41.49 wt%. For chemical applications, the optimized parameters resulted in a bio-oil with 60.63 wt% phenolic content and a bio-oil yield of 48.93 wt%. For pharmaceutical applications, the bio-oil contained 10.42 wt% aldehydes and 21.49 wt% ketones, with a bio-oil yield of 36.56 wt%. Feature importance analysis revealed that biomass properties and catalyst characteristics could significantly influence process modeling, accounting for 61.3 % and 24.7 % of the impact on bio-oil yield, respectively, while operating conditions showed the slightest effect. These findings provide valuable insights for future experimental studies, enabling the optimization of <em>in-situ</em> biomass catalytic pyrolysis for energy, chemical, and pharmaceutical applications. Moreover, the feature importance analysis enhances understanding of the complex <em>in-situ</em> catalytic pyrolysis process, guiding the design of more efficient pyrolysis reactors and contributing to sustainable biofuel and biochemical production technologies.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"209 ","pages":"Article 115099"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning\",\"authors\":\"Xiangmeng Chen ,&nbsp;Alireza Shafizadeh ,&nbsp;Hossein Shahbeik ,&nbsp;Mohammad Hossein Nadian ,&nbsp;Milad Golvirdizadeh ,&nbsp;Wanxi Peng ,&nbsp;Su Shiung Lam ,&nbsp;Meisam Tabatabaei ,&nbsp;Mortaza Aghbashlo\",\"doi\":\"10.1016/j.rser.2024.115099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study leverages machine learning technology, coupled with an evolutionary algorithm, to forecast and optimize the distribution and composition of products from <em>in-situ</em> biomass catalytic pyrolysis. Among the four machine learning models employed, the ensemble learning model emerged as the frontrunner, demonstrating superior prediction performance (R<sup>2</sup> &gt; 0.89, RMSE &lt;0.03, and MAE &lt;0.01) compared to generalized additive, support vector regressor, and artificial neural network models. Multi-objective optimization results favored catalyst-to-biomass ratios near unity for bio-oil production, with optimal catalyst acid site content ranging from 0.04 to 2.49 mmol/g for various bio-oil applications. For energy applications, the optimal parameters yielded a bio-oil with 63.36 wt% hydrocarbon content and a bio-oil yield of 41.49 wt%. For chemical applications, the optimized parameters resulted in a bio-oil with 60.63 wt% phenolic content and a bio-oil yield of 48.93 wt%. For pharmaceutical applications, the bio-oil contained 10.42 wt% aldehydes and 21.49 wt% ketones, with a bio-oil yield of 36.56 wt%. Feature importance analysis revealed that biomass properties and catalyst characteristics could significantly influence process modeling, accounting for 61.3 % and 24.7 % of the impact on bio-oil yield, respectively, while operating conditions showed the slightest effect. These findings provide valuable insights for future experimental studies, enabling the optimization of <em>in-situ</em> biomass catalytic pyrolysis for energy, chemical, and pharmaceutical applications. Moreover, the feature importance analysis enhances understanding of the complex <em>in-situ</em> catalytic pyrolysis process, guiding the design of more efficient pyrolysis reactors and contributing to sustainable biofuel and biochemical production technologies.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"209 \",\"pages\":\"Article 115099\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124008256\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124008256","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用机器学习技术和进化算法来预测和优化原位生物质催化热解产物的分布和组成。在所采用的四种机器学习模型中,集合学习模型成为领跑者,与广义相加模型、支持向量回归模型和人工神经网络模型相比,表现出更优越的预测性能(R2 >0.89、RMSE <0.03和MAE <0.01)。多目标优化结果表明,在生物油生产中,催化剂与生物质的比例接近于一,在各种生物油应用中,催化剂酸性位点的最佳含量为 0.04 至 2.49 毫摩尔/克。在能源应用方面,最佳参数产生的生物油碳氢化合物含量为 63.36 wt%,生物油产量为 41.49 wt%。在化学应用方面,优化参数产生的生物油的酚含量为 60.63 wt%,生物油产率为 48.93 wt%。在制药应用方面,生物油含有 10.42 wt%的醛和 21.49 wt%的酮,生物油产量为 36.56 wt%。特征重要性分析表明,生物质特性和催化剂特性对工艺模型的影响很大,分别占生物油产率影响的 61.3% 和 24.7%,而操作条件的影响最小。这些发现为今后的实验研究提供了宝贵的见解,有助于优化能源、化工和制药应用中的原位生物质催化热解。此外,特征重要性分析还加深了人们对复杂的原位催化热解过程的理解,从而指导设计更高效的热解反应器,为可持续的生物燃料和生化生产技术做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning

Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning
This study leverages machine learning technology, coupled with an evolutionary algorithm, to forecast and optimize the distribution and composition of products from in-situ biomass catalytic pyrolysis. Among the four machine learning models employed, the ensemble learning model emerged as the frontrunner, demonstrating superior prediction performance (R2 > 0.89, RMSE <0.03, and MAE <0.01) compared to generalized additive, support vector regressor, and artificial neural network models. Multi-objective optimization results favored catalyst-to-biomass ratios near unity for bio-oil production, with optimal catalyst acid site content ranging from 0.04 to 2.49 mmol/g for various bio-oil applications. For energy applications, the optimal parameters yielded a bio-oil with 63.36 wt% hydrocarbon content and a bio-oil yield of 41.49 wt%. For chemical applications, the optimized parameters resulted in a bio-oil with 60.63 wt% phenolic content and a bio-oil yield of 48.93 wt%. For pharmaceutical applications, the bio-oil contained 10.42 wt% aldehydes and 21.49 wt% ketones, with a bio-oil yield of 36.56 wt%. Feature importance analysis revealed that biomass properties and catalyst characteristics could significantly influence process modeling, accounting for 61.3 % and 24.7 % of the impact on bio-oil yield, respectively, while operating conditions showed the slightest effect. These findings provide valuable insights for future experimental studies, enabling the optimization of in-situ biomass catalytic pyrolysis for energy, chemical, and pharmaceutical applications. Moreover, the feature importance analysis enhances understanding of the complex in-situ catalytic pyrolysis process, guiding the design of more efficient pyrolysis reactors and contributing to sustainable biofuel and biochemical production technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信