动态系统启发的干旱预测机器学习方法

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY
Andrew Watford , Chris T. Bauch , Madhur Anand
{"title":"动态系统启发的干旱预测机器学习方法","authors":"Andrew Watford ,&nbsp;Chris T. Bauch ,&nbsp;Madhur Anand","doi":"10.1016/j.ecoinf.2024.102889","DOIUrl":null,"url":null,"abstract":"<div><div>Drought is a naturally occurring phenomenon that affects millions of people and results in billions of dollars in damages each year, with impacts expected to worsen due to climate change. At the same time, definitions of drought are nebulous, and extant quantitative drought indicators suffer from short prediction horizons. One such indicator is the Normalized Vegetation Difference Index (NDVI), which measures photosynthetic activity, making it a strong proxy for vegetation density. Recent studies have identified chaotic attractors in satellite-derived NDVI time-series, suggesting a dynamical systems framework may be helpful for time-series prediction of NDVI. In this study, we compare the performance of a mechanistic model and two physics-informed machine learning methods (Sparse Identification of Nonlinear Dynamics [SINDy] and reservoir computing) on the prediction of NDVI time-series data in drought-prone regions of Kenya. We find that SINDy, a sparse polynomial modelling architecture, narrowly outperforms the other two methods with the use of precipitation data, while also retaining some of the interpretability of the mechanistic model. We also find that none of the methods perform as well in the regions in which the chaotic NDVI attractors were originally identified. We conclude by proposing more sophisticated extensions to the methods presented here, both with and without the availability of precipitation data, that draw on the existing dynamical systems and machine learning literature to enable better quantitative predictions of key drought indicators.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102889"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical systems-inspired machine learning methods for drought prediction\",\"authors\":\"Andrew Watford ,&nbsp;Chris T. Bauch ,&nbsp;Madhur Anand\",\"doi\":\"10.1016/j.ecoinf.2024.102889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drought is a naturally occurring phenomenon that affects millions of people and results in billions of dollars in damages each year, with impacts expected to worsen due to climate change. At the same time, definitions of drought are nebulous, and extant quantitative drought indicators suffer from short prediction horizons. One such indicator is the Normalized Vegetation Difference Index (NDVI), which measures photosynthetic activity, making it a strong proxy for vegetation density. Recent studies have identified chaotic attractors in satellite-derived NDVI time-series, suggesting a dynamical systems framework may be helpful for time-series prediction of NDVI. In this study, we compare the performance of a mechanistic model and two physics-informed machine learning methods (Sparse Identification of Nonlinear Dynamics [SINDy] and reservoir computing) on the prediction of NDVI time-series data in drought-prone regions of Kenya. We find that SINDy, a sparse polynomial modelling architecture, narrowly outperforms the other two methods with the use of precipitation data, while also retaining some of the interpretability of the mechanistic model. We also find that none of the methods perform as well in the regions in which the chaotic NDVI attractors were originally identified. We conclude by proposing more sophisticated extensions to the methods presented here, both with and without the availability of precipitation data, that draw on the existing dynamical systems and machine learning literature to enable better quantitative predictions of key drought indicators.</div></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":\"84 \",\"pages\":\"Article 102889\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157495412400431X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157495412400431X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

干旱是一种自然发生的现象,每年影响数百万人,造成数十亿美元的损失,预计其影响将因气候变化而加剧。同时,干旱的定义模糊不清,现有的定量干旱指标也存在预测范围短的问题。其中一个指标是归一化植被差异指数(NDVI),它测量光合活动,是植被密度的有力代表。最近的研究发现了卫星获取的 NDVI 时间序列中的混沌吸引子,这表明动力系统框架可能有助于 NDVI 的时间序列预测。在本研究中,我们比较了力学模型和两种物理信息机器学习方法(非线性动力学稀疏识别 [SINDy] 和水库计算)在肯尼亚干旱易发地区预测 NDVI 时间序列数据方面的性能。我们发现,SINDy 是一种稀疏多项式建模结构,在使用降水数据时以微弱优势胜过其他两种方法,同时还保留了一些机理模型的可解释性。我们还发现,在最初识别出混沌 NDVI 吸引子的区域,没有一种方法表现得那么好。最后,我们利用现有的动力系统和机器学习文献,对本文介绍的方法提出了更复杂的扩展建议,包括使用降水数据和不使用降水数据,以便更好地对关键干旱指标进行定量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical systems-inspired machine learning methods for drought prediction
Drought is a naturally occurring phenomenon that affects millions of people and results in billions of dollars in damages each year, with impacts expected to worsen due to climate change. At the same time, definitions of drought are nebulous, and extant quantitative drought indicators suffer from short prediction horizons. One such indicator is the Normalized Vegetation Difference Index (NDVI), which measures photosynthetic activity, making it a strong proxy for vegetation density. Recent studies have identified chaotic attractors in satellite-derived NDVI time-series, suggesting a dynamical systems framework may be helpful for time-series prediction of NDVI. In this study, we compare the performance of a mechanistic model and two physics-informed machine learning methods (Sparse Identification of Nonlinear Dynamics [SINDy] and reservoir computing) on the prediction of NDVI time-series data in drought-prone regions of Kenya. We find that SINDy, a sparse polynomial modelling architecture, narrowly outperforms the other two methods with the use of precipitation data, while also retaining some of the interpretability of the mechanistic model. We also find that none of the methods perform as well in the regions in which the chaotic NDVI attractors were originally identified. We conclude by proposing more sophisticated extensions to the methods presented here, both with and without the availability of precipitation data, that draw on the existing dynamical systems and machine learning literature to enable better quantitative predictions of key drought indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信