为深度学习探索不同的水力断层数据表示:序列还是图像

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL
Yuzhe Ji, Yuanyuan Zha, Xuezi Gong
{"title":"为深度学习探索不同的水力断层数据表示:序列还是图像","authors":"Yuzhe Ji,&nbsp;Yuanyuan Zha,&nbsp;Xuezi Gong","doi":"10.1016/j.jhydrol.2024.132368","DOIUrl":null,"url":null,"abstract":"<div><div>Hydraulic tomography (HT) has emerged as a cost-efficient approach to infer the heterogeneity of geological media. The application of deep learning to hydraulic inverse problems has shown promising results, including approximating the inverse mapping from HT data to the image of hydraulic conductivity. However, most studies require the conversion of point-form HT data into images, regarding building inverse mapping as an image-image task. This necessitates data preprocessing, introducing human-induced errors. Besides, extracting features from images imposes a greater computational burden. To address these shortcomings, we proposed the utilization of sequence models to build the inverse mapping directly from observational data space to parameter space, thereby enhancing accuracy and reducing computational demands. An assessment was conducted on sequence models and image-to-image regression networks in a synthetic steady-state HT experiment. Comparative analyses were performed under different scenarios, including varying amounts of available data and data noise. Lastly, we applied our method in a synthetic transient HT experiment. Results showed that some sequence models, namely Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Transformer have similar performance compared to the image-to-image regression networks, which are CNN2D and U-Net in this study, but the sequence models have lower computational costs significantly. The Transformer-based model outperforms its closest competitor, achieving an R2 of 0.9666 and an RMSE of 0.1467. It was also found that the Transformer-based model had greater interpretability by analyzing the attention score matrix. The application of our methods in the synthetic transient HT experiment demonstrated the flexibility of using sequence models. Hydrogeologists should prioritize the characteristics of available data when selecting between these two methods and note that data noise can significantly compromise the efficacy of both approaches.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"648 ","pages":"Article 132368"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring different representations of hydraulic tomographic data for deep learning: Sequence or image\",\"authors\":\"Yuzhe Ji,&nbsp;Yuanyuan Zha,&nbsp;Xuezi Gong\",\"doi\":\"10.1016/j.jhydrol.2024.132368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydraulic tomography (HT) has emerged as a cost-efficient approach to infer the heterogeneity of geological media. The application of deep learning to hydraulic inverse problems has shown promising results, including approximating the inverse mapping from HT data to the image of hydraulic conductivity. However, most studies require the conversion of point-form HT data into images, regarding building inverse mapping as an image-image task. This necessitates data preprocessing, introducing human-induced errors. Besides, extracting features from images imposes a greater computational burden. To address these shortcomings, we proposed the utilization of sequence models to build the inverse mapping directly from observational data space to parameter space, thereby enhancing accuracy and reducing computational demands. An assessment was conducted on sequence models and image-to-image regression networks in a synthetic steady-state HT experiment. Comparative analyses were performed under different scenarios, including varying amounts of available data and data noise. Lastly, we applied our method in a synthetic transient HT experiment. Results showed that some sequence models, namely Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Transformer have similar performance compared to the image-to-image regression networks, which are CNN2D and U-Net in this study, but the sequence models have lower computational costs significantly. The Transformer-based model outperforms its closest competitor, achieving an R2 of 0.9666 and an RMSE of 0.1467. It was also found that the Transformer-based model had greater interpretability by analyzing the attention score matrix. The application of our methods in the synthetic transient HT experiment demonstrated the flexibility of using sequence models. Hydrogeologists should prioritize the characteristics of available data when selecting between these two methods and note that data noise can significantly compromise the efficacy of both approaches.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"648 \",\"pages\":\"Article 132368\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424017645\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424017645","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

水力层析成像(HT)是推断地质介质异质性的一种经济高效的方法。深度学习在水力反演问题上的应用取得了可喜的成果,包括将水力断层数据的反演映射近似为水力传导性图像。然而,大多数研究需要将点形式 HT 数据转换为图像,将建立反映射视为图像-图像任务。这就需要对数据进行预处理,从而引入人为误差。此外,从图像中提取特征会增加计算负担。针对这些缺点,我们提出利用序列模型直接从观测数据空间到参数空间建立反映射,从而提高精确度并降低计算要求。我们在一个合成稳态高温热成像实验中对序列模型和图像到图像回归网络进行了评估。在不同情况下进行了比较分析,包括不同数量的可用数据和数据噪声。最后,我们在合成瞬态 HT 实验中应用了我们的方法。结果表明,一些序列模型,即门控递归单元(GRU)、长短期记忆(LSTM)和 Transformer,与本研究中的 CNN2D 和 U-Net 等图像到图像回归网络相比性能相似,但序列模型的计算成本明显更低。基于 Transformer 的模型优于其最接近的竞争对手,R2 为 0.9666,RMSE 为 0.1467。通过分析注意力得分矩阵,我们还发现基于变换器的模型具有更高的可解释性。在合成瞬态 HT 实验中应用我们的方法证明了使用序列模型的灵活性。水文地质学家在选择这两种方法时,应优先考虑可用数据的特征,并注意数据噪声会严重影响这两种方法的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring different representations of hydraulic tomographic data for deep learning: Sequence or image
Hydraulic tomography (HT) has emerged as a cost-efficient approach to infer the heterogeneity of geological media. The application of deep learning to hydraulic inverse problems has shown promising results, including approximating the inverse mapping from HT data to the image of hydraulic conductivity. However, most studies require the conversion of point-form HT data into images, regarding building inverse mapping as an image-image task. This necessitates data preprocessing, introducing human-induced errors. Besides, extracting features from images imposes a greater computational burden. To address these shortcomings, we proposed the utilization of sequence models to build the inverse mapping directly from observational data space to parameter space, thereby enhancing accuracy and reducing computational demands. An assessment was conducted on sequence models and image-to-image regression networks in a synthetic steady-state HT experiment. Comparative analyses were performed under different scenarios, including varying amounts of available data and data noise. Lastly, we applied our method in a synthetic transient HT experiment. Results showed that some sequence models, namely Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Transformer have similar performance compared to the image-to-image regression networks, which are CNN2D and U-Net in this study, but the sequence models have lower computational costs significantly. The Transformer-based model outperforms its closest competitor, achieving an R2 of 0.9666 and an RMSE of 0.1467. It was also found that the Transformer-based model had greater interpretability by analyzing the attention score matrix. The application of our methods in the synthetic transient HT experiment demonstrated the flexibility of using sequence models. Hydrogeologists should prioritize the characteristics of available data when selecting between these two methods and note that data noise can significantly compromise the efficacy of both approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信