Martina Brandolini , Alessandra Mistral De Pascali , Irene Zaghi , Giorgio Dirani , Silvia Zannoli , Ludovica Ingletto , Antonio Lavazza , Davide Lelli , Michele Dottori , Mattia Calzolari , Massimiliano Guerra , Carlo Biagetti , Francesco Cristini , Paolo Bassi , Rino Biguzzi , Monica Cricca , Alessandra Scagliarini , Vittorio Sambri
{"title":"通过全基因组测序推进西尼罗河病毒监测:意大利罗马涅 \"一个健康 \"基因组监测研究的启示","authors":"Martina Brandolini , Alessandra Mistral De Pascali , Irene Zaghi , Giorgio Dirani , Silvia Zannoli , Ludovica Ingletto , Antonio Lavazza , Davide Lelli , Michele Dottori , Mattia Calzolari , Massimiliano Guerra , Carlo Biagetti , Francesco Cristini , Paolo Bassi , Rino Biguzzi , Monica Cricca , Alessandra Scagliarini , Vittorio Sambri","doi":"10.1016/j.onehlt.2024.100937","DOIUrl":null,"url":null,"abstract":"<div><div>In the last 6 years, Italy accounted for 36 % of the total autochthonous European West Nile virus (WNV) cases reported to ECDC. Since 2001, the country put in place a multi-species national surveillance plan. The plan was enhanced in 2020 by adopting a fully integrated “One Health” approach, including human, wild bird, equine, and mosquito surveillance for the early detection of WNV. In this context, the systematic acquisition of whole viral genetic information from human patients and animals is fundamental to obtain an in-depth knowledge on the patterns of virus evolution and transmission and to gain insights on the role virus genetics in morbidity and mortality, The purpose of this pilot study was thus to design a One-Health surveillance framework based on the genomic surveillance of WNV circulating at the vector-human-animal interface, in the endemic territory of Romagna (North-Eastern Italy) during the 2023 transmission season. Whole genome sequencing (WGS) analyses confirmed the circulation of WNV lineage 2 showing high nucleotide and amino acid identity of 99.82 % and 99.92 % respectively among viral sequences from human patients, vectors and birds. All the sequences clustered with other Italian strains in the Central and Southern European clade with robust bootstrap support and BLASTn identity exceeding 99.7 %. The highest nucleotide identity was observed with sequences from Emilia-Romagna and Veneto regions (Italy), confirming a local virus circulation and overwintering of WNV lineage 2 with a confined virus spread and no (or limited) external introduction of viral strains. Our results, support the adoption of a One Health approach to WNV surveillance, based on WGS and integrating the clinical diagnosis, epidemiology, and genomic characterisation, to create a suitable operational process for the characterisation of autochthonous and imported Arboviruses circulating in Romagna to effectively integrate the already established surveillance plan.</div></div>","PeriodicalId":19577,"journal":{"name":"One Health","volume":"19 ","pages":"Article 100937"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing West Nile virus monitoring through whole genome sequencing: Insights from a One Health genomic surveillance study in Romagna (Italy)\",\"authors\":\"Martina Brandolini , Alessandra Mistral De Pascali , Irene Zaghi , Giorgio Dirani , Silvia Zannoli , Ludovica Ingletto , Antonio Lavazza , Davide Lelli , Michele Dottori , Mattia Calzolari , Massimiliano Guerra , Carlo Biagetti , Francesco Cristini , Paolo Bassi , Rino Biguzzi , Monica Cricca , Alessandra Scagliarini , Vittorio Sambri\",\"doi\":\"10.1016/j.onehlt.2024.100937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the last 6 years, Italy accounted for 36 % of the total autochthonous European West Nile virus (WNV) cases reported to ECDC. Since 2001, the country put in place a multi-species national surveillance plan. The plan was enhanced in 2020 by adopting a fully integrated “One Health” approach, including human, wild bird, equine, and mosquito surveillance for the early detection of WNV. In this context, the systematic acquisition of whole viral genetic information from human patients and animals is fundamental to obtain an in-depth knowledge on the patterns of virus evolution and transmission and to gain insights on the role virus genetics in morbidity and mortality, The purpose of this pilot study was thus to design a One-Health surveillance framework based on the genomic surveillance of WNV circulating at the vector-human-animal interface, in the endemic territory of Romagna (North-Eastern Italy) during the 2023 transmission season. Whole genome sequencing (WGS) analyses confirmed the circulation of WNV lineage 2 showing high nucleotide and amino acid identity of 99.82 % and 99.92 % respectively among viral sequences from human patients, vectors and birds. All the sequences clustered with other Italian strains in the Central and Southern European clade with robust bootstrap support and BLASTn identity exceeding 99.7 %. The highest nucleotide identity was observed with sequences from Emilia-Romagna and Veneto regions (Italy), confirming a local virus circulation and overwintering of WNV lineage 2 with a confined virus spread and no (or limited) external introduction of viral strains. Our results, support the adoption of a One Health approach to WNV surveillance, based on WGS and integrating the clinical diagnosis, epidemiology, and genomic characterisation, to create a suitable operational process for the characterisation of autochthonous and imported Arboviruses circulating in Romagna to effectively integrate the already established surveillance plan.</div></div>\",\"PeriodicalId\":19577,\"journal\":{\"name\":\"One Health\",\"volume\":\"19 \",\"pages\":\"Article 100937\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"One Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352771424002635\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"One Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352771424002635","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Advancing West Nile virus monitoring through whole genome sequencing: Insights from a One Health genomic surveillance study in Romagna (Italy)
In the last 6 years, Italy accounted for 36 % of the total autochthonous European West Nile virus (WNV) cases reported to ECDC. Since 2001, the country put in place a multi-species national surveillance plan. The plan was enhanced in 2020 by adopting a fully integrated “One Health” approach, including human, wild bird, equine, and mosquito surveillance for the early detection of WNV. In this context, the systematic acquisition of whole viral genetic information from human patients and animals is fundamental to obtain an in-depth knowledge on the patterns of virus evolution and transmission and to gain insights on the role virus genetics in morbidity and mortality, The purpose of this pilot study was thus to design a One-Health surveillance framework based on the genomic surveillance of WNV circulating at the vector-human-animal interface, in the endemic territory of Romagna (North-Eastern Italy) during the 2023 transmission season. Whole genome sequencing (WGS) analyses confirmed the circulation of WNV lineage 2 showing high nucleotide and amino acid identity of 99.82 % and 99.92 % respectively among viral sequences from human patients, vectors and birds. All the sequences clustered with other Italian strains in the Central and Southern European clade with robust bootstrap support and BLASTn identity exceeding 99.7 %. The highest nucleotide identity was observed with sequences from Emilia-Romagna and Veneto regions (Italy), confirming a local virus circulation and overwintering of WNV lineage 2 with a confined virus spread and no (or limited) external introduction of viral strains. Our results, support the adoption of a One Health approach to WNV surveillance, based on WGS and integrating the clinical diagnosis, epidemiology, and genomic characterisation, to create a suitable operational process for the characterisation of autochthonous and imported Arboviruses circulating in Romagna to effectively integrate the already established surveillance plan.
期刊介绍:
One Health - a Gold Open Access journal.
The mission of One Health is to provide a platform for rapid communication of high quality scientific knowledge on inter- and intra-species pathogen transmission, bringing together leading experts in virology, bacteriology, parasitology, mycology, vectors and vector-borne diseases, tropical health, veterinary sciences, pathology, immunology, food safety, mathematical modelling, epidemiology, public health research and emergency preparedness. As a Gold Open Access journal, a fee is payable on acceptance of the paper. Please see the Guide for Authors for more information.
Submissions to the following categories are welcome:
Virology,
Bacteriology,
Parasitology,
Mycology,
Vectors and vector-borne diseases,
Co-infections and co-morbidities,
Disease spatial surveillance,
Modelling,
Tropical Health,
Discovery,
Ecosystem Health,
Public Health.