{"title":"阿隆问题的新成果","authors":"Bin Chen","doi":"10.1016/j.disc.2024.114337","DOIUrl":null,"url":null,"abstract":"<div><div>In 2006, Alon proposed a problem of characterizing all four-tuples <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> such that every digraph on <em>n</em> vertices of minimum out-degree at least <em>s</em> contains a subdigraph on <em>m</em> vertices of minimum out-degree at least <em>d</em>. He in particular asked whether there exists an absolute constant <em>c</em> such that every digraph on 2<em>n</em> vertices of minimum out-degree at least <em>s</em> contains a subdigraph on <em>n</em> vertices of minimum out-degree at least <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>c</mi></math></span>? Recently, Steiner resolved this case in the negative by showing that for arbitrarily large <em>n</em>, there exists a tournament on 2<em>n</em> vertices of minimum out-degree <span><math><mi>s</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, in which the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>3</mn></mrow></msub><mo></mo><mi>s</mi></math></span>.</div><div>In this paper, we study the above problem and present two new results. The first result is that for arbitrary large <em>n</em> and any integer <span><math><mi>α</mi><mo>≥</mo><mn>2</mn></math></span>, there exists a digraph on <em>αn</em> vertices of minimum out-degree <span><math><mi>s</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> satisfying that the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mi>α</mi></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>α</mi><mo>+</mo><mn>1</mn></mrow></msub><mo></mo><mi>s</mi></math></span>. The second result is that for arbitrary large <em>n</em> and any <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span>, there exists a digraph on 2<em>n</em> vertices of girth <em>r</em> and minimum out-degree <em>s</em> satisfying that the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>r</mi></mrow></msub><mo></mo><mi>s</mi></math></span> if <em>r</em> is odd, and is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub><mo></mo><mi>s</mi></math></span> if <em>r</em> is even.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 3","pages":"Article 114337"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New results on a problem of Alon\",\"authors\":\"Bin Chen\",\"doi\":\"10.1016/j.disc.2024.114337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 2006, Alon proposed a problem of characterizing all four-tuples <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> such that every digraph on <em>n</em> vertices of minimum out-degree at least <em>s</em> contains a subdigraph on <em>m</em> vertices of minimum out-degree at least <em>d</em>. He in particular asked whether there exists an absolute constant <em>c</em> such that every digraph on 2<em>n</em> vertices of minimum out-degree at least <em>s</em> contains a subdigraph on <em>n</em> vertices of minimum out-degree at least <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>c</mi></math></span>? Recently, Steiner resolved this case in the negative by showing that for arbitrarily large <em>n</em>, there exists a tournament on 2<em>n</em> vertices of minimum out-degree <span><math><mi>s</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, in which the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>3</mn></mrow></msub><mo></mo><mi>s</mi></math></span>.</div><div>In this paper, we study the above problem and present two new results. The first result is that for arbitrary large <em>n</em> and any integer <span><math><mi>α</mi><mo>≥</mo><mn>2</mn></math></span>, there exists a digraph on <em>αn</em> vertices of minimum out-degree <span><math><mi>s</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> satisfying that the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mi>α</mi></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>α</mi><mo>+</mo><mn>1</mn></mrow></msub><mo></mo><mi>s</mi></math></span>. The second result is that for arbitrary large <em>n</em> and any <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span>, there exists a digraph on 2<em>n</em> vertices of girth <em>r</em> and minimum out-degree <em>s</em> satisfying that the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>r</mi></mrow></msub><mo></mo><mi>s</mi></math></span> if <em>r</em> is odd, and is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub><mo></mo><mi>s</mi></math></span> if <em>r</em> is even.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 3\",\"pages\":\"Article 114337\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004680\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004680","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
2006 年,阿隆提出了一个问题:如何描述所有四元组(n,m,s,d),使得 n 个顶点上最小外度至少为 s 的每个图都包含 m 个顶点上最小外度至少为 d 的一个子图?最近,斯坦纳从反面解决了这个问题,他证明了对于任意大的 n,存在一个 2n 个顶点上最小外度为 s=n-1 的锦标赛,其中 n 个顶点上每个子图的最小外度最多为 s2-(12+o(1))log3s.在本文中,我们研究了上述问题,并提出了两个新结果。第一个结果是,对于任意大 n 和任意整数 α≥2,存在一个最小外度为 s=n-1 的 αn 个顶点上的图,它满足 n 个顶点上每个子图的最小外度至多为 sα-(1α+o(1))logα+1s 的要求。第二个结果是,对于任意大 n 和任意 r≥3,存在一个 2n 个顶点上的周长为 r 且最小外度为 s 的图,如果 r 为奇数,则满足 n 个顶点上每个子图的最小外度至多为 s2-(12+o(1))logrs ;如果 r 为偶数,则满足 n 个顶点上每个子图的最小外度至多为 s2-(12+o(1))logr+1s 。
In 2006, Alon proposed a problem of characterizing all four-tuples such that every digraph on n vertices of minimum out-degree at least s contains a subdigraph on m vertices of minimum out-degree at least d. He in particular asked whether there exists an absolute constant c such that every digraph on 2n vertices of minimum out-degree at least s contains a subdigraph on n vertices of minimum out-degree at least ? Recently, Steiner resolved this case in the negative by showing that for arbitrarily large n, there exists a tournament on 2n vertices of minimum out-degree , in which the minimum out-degree of every subdigraph on n vertices is at most .
In this paper, we study the above problem and present two new results. The first result is that for arbitrary large n and any integer , there exists a digraph on αn vertices of minimum out-degree satisfying that the minimum out-degree of every subdigraph on n vertices is at most . The second result is that for arbitrary large n and any , there exists a digraph on 2n vertices of girth r and minimum out-degree s satisfying that the minimum out-degree of every subdigraph on n vertices is at most if r is odd, and is at most if r is even.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.