阿隆问题的新成果

IF 0.7 3区 数学 Q2 MATHEMATICS
Bin Chen
{"title":"阿隆问题的新成果","authors":"Bin Chen","doi":"10.1016/j.disc.2024.114337","DOIUrl":null,"url":null,"abstract":"<div><div>In 2006, Alon proposed a problem of characterizing all four-tuples <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> such that every digraph on <em>n</em> vertices of minimum out-degree at least <em>s</em> contains a subdigraph on <em>m</em> vertices of minimum out-degree at least <em>d</em>. He in particular asked whether there exists an absolute constant <em>c</em> such that every digraph on 2<em>n</em> vertices of minimum out-degree at least <em>s</em> contains a subdigraph on <em>n</em> vertices of minimum out-degree at least <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>c</mi></math></span>? Recently, Steiner resolved this case in the negative by showing that for arbitrarily large <em>n</em>, there exists a tournament on 2<em>n</em> vertices of minimum out-degree <span><math><mi>s</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, in which the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⁡</mo><mi>s</mi></math></span>.</div><div>In this paper, we study the above problem and present two new results. The first result is that for arbitrary large <em>n</em> and any integer <span><math><mi>α</mi><mo>≥</mo><mn>2</mn></math></span>, there exists a digraph on <em>αn</em> vertices of minimum out-degree <span><math><mi>s</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> satisfying that the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mi>α</mi></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>α</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⁡</mo><mi>s</mi></math></span>. The second result is that for arbitrary large <em>n</em> and any <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span>, there exists a digraph on 2<em>n</em> vertices of girth <em>r</em> and minimum out-degree <em>s</em> satisfying that the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⁡</mo><mi>s</mi></math></span> if <em>r</em> is odd, and is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⁡</mo><mi>s</mi></math></span> if <em>r</em> is even.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 3","pages":"Article 114337"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New results on a problem of Alon\",\"authors\":\"Bin Chen\",\"doi\":\"10.1016/j.disc.2024.114337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 2006, Alon proposed a problem of characterizing all four-tuples <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> such that every digraph on <em>n</em> vertices of minimum out-degree at least <em>s</em> contains a subdigraph on <em>m</em> vertices of minimum out-degree at least <em>d</em>. He in particular asked whether there exists an absolute constant <em>c</em> such that every digraph on 2<em>n</em> vertices of minimum out-degree at least <em>s</em> contains a subdigraph on <em>n</em> vertices of minimum out-degree at least <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>c</mi></math></span>? Recently, Steiner resolved this case in the negative by showing that for arbitrarily large <em>n</em>, there exists a tournament on 2<em>n</em> vertices of minimum out-degree <span><math><mi>s</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, in which the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⁡</mo><mi>s</mi></math></span>.</div><div>In this paper, we study the above problem and present two new results. The first result is that for arbitrary large <em>n</em> and any integer <span><math><mi>α</mi><mo>≥</mo><mn>2</mn></math></span>, there exists a digraph on <em>αn</em> vertices of minimum out-degree <span><math><mi>s</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> satisfying that the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mi>α</mi></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>α</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⁡</mo><mi>s</mi></math></span>. The second result is that for arbitrary large <em>n</em> and any <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span>, there exists a digraph on 2<em>n</em> vertices of girth <em>r</em> and minimum out-degree <em>s</em> satisfying that the minimum out-degree of every subdigraph on <em>n</em> vertices is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⁡</mo><mi>s</mi></math></span> if <em>r</em> is odd, and is at most <span><math><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⁡</mo><mi>s</mi></math></span> if <em>r</em> is even.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 3\",\"pages\":\"Article 114337\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004680\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004680","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2006 年,阿隆提出了一个问题:如何描述所有四元组(n,m,s,d),使得 n 个顶点上最小外度至少为 s 的每个图都包含 m 个顶点上最小外度至少为 d 的一个子图?最近,斯坦纳从反面解决了这个问题,他证明了对于任意大的 n,存在一个 2n 个顶点上最小外度为 s=n-1 的锦标赛,其中 n 个顶点上每个子图的最小外度最多为 s2-(12+o(1))log3s.在本文中,我们研究了上述问题,并提出了两个新结果。第一个结果是,对于任意大 n 和任意整数 α≥2,存在一个最小外度为 s=n-1 的 αn 个顶点上的图,它满足 n 个顶点上每个子图的最小外度至多为 sα-(1α+o(1))logα+1s 的要求。第二个结果是,对于任意大 n 和任意 r≥3,存在一个 2n 个顶点上的周长为 r 且最小外度为 s 的图,如果 r 为奇数,则满足 n 个顶点上每个子图的最小外度至多为 s2-(12+o(1))logrs ;如果 r 为偶数,则满足 n 个顶点上每个子图的最小外度至多为 s2-(12+o(1))logr+1s 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New results on a problem of Alon
In 2006, Alon proposed a problem of characterizing all four-tuples (n,m,s,d) such that every digraph on n vertices of minimum out-degree at least s contains a subdigraph on m vertices of minimum out-degree at least d. He in particular asked whether there exists an absolute constant c such that every digraph on 2n vertices of minimum out-degree at least s contains a subdigraph on n vertices of minimum out-degree at least s2c? Recently, Steiner resolved this case in the negative by showing that for arbitrarily large n, there exists a tournament on 2n vertices of minimum out-degree s=n1, in which the minimum out-degree of every subdigraph on n vertices is at most s2(12+o(1))log3s.
In this paper, we study the above problem and present two new results. The first result is that for arbitrary large n and any integer α2, there exists a digraph on αn vertices of minimum out-degree s=n1 satisfying that the minimum out-degree of every subdigraph on n vertices is at most sα(1α+o(1))logα+1s. The second result is that for arbitrary large n and any r3, there exists a digraph on 2n vertices of girth r and minimum out-degree s satisfying that the minimum out-degree of every subdigraph on n vertices is at most s2(12+o(1))logrs if r is odd, and is at most s2(12+o(1))logr+1s if r is even.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信