实现整数分割的拉丁超立方体

IF 0.7 3区 数学 Q2 MATHEMATICS
Diane Donovan, Tara Kemp, James Lefevre
{"title":"实现整数分割的拉丁超立方体","authors":"Diane Donovan,&nbsp;Tara Kemp,&nbsp;James Lefevre","doi":"10.1016/j.disc.2024.114333","DOIUrl":null,"url":null,"abstract":"<div><div>For an integer partition <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>N</mi></math></span>, a 2-realization of this partition is a latin square of order <em>N</em> with disjoint subsquares of orders <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The existence of 2-realizations is a partially solved problem posed by Fuchs. In this paper, we extend Fuchs' problem to <em>m</em>-ary quasigroups, or, equivalently, latin hypercubes. We construct latin cubes for some partitions with at most two distinct parts and highlight how the new problem is related to the original.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 3","pages":"Article 114333"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latin hypercubes realizing integer partitions\",\"authors\":\"Diane Donovan,&nbsp;Tara Kemp,&nbsp;James Lefevre\",\"doi\":\"10.1016/j.disc.2024.114333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For an integer partition <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>N</mi></math></span>, a 2-realization of this partition is a latin square of order <em>N</em> with disjoint subsquares of orders <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The existence of 2-realizations is a partially solved problem posed by Fuchs. In this paper, we extend Fuchs' problem to <em>m</em>-ary quasigroups, or, equivalently, latin hypercubes. We construct latin cubes for some partitions with at most two distinct parts and highlight how the new problem is related to the original.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 3\",\"pages\":\"Article 114333\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004643\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004643","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 h1+...+hn=N 的整数分割,该分割的 2 重化是一个 N 阶拉丁方阵,其子方阵的阶数为 h1,...,hn。2 重化的存在是富克斯提出的一个已部分解决的问题。在本文中,我们将福克斯的问题扩展到 mary 准群,或者等价于拉丁超立方。我们为最多有两个不同部分的一些分区构造了拉丁立方体,并强调了新问题与原问题的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latin hypercubes realizing integer partitions
For an integer partition h1++hn=N, a 2-realization of this partition is a latin square of order N with disjoint subsquares of orders h1,,hn. The existence of 2-realizations is a partially solved problem posed by Fuchs. In this paper, we extend Fuchs' problem to m-ary quasigroups, or, equivalently, latin hypercubes. We construct latin cubes for some partitions with at most two distinct parts and highlight how the new problem is related to the original.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信