焦科维奇-温克勒关系的补码

IF 0.7 3区 数学 Q2 MATHEMATICS
Marc Hellmuth , Bruno J. Schmidt , Guillaume E. Scholz , Sandhya Thekkumpadan Puthiyaveedu
{"title":"焦科维奇-温克勒关系的补码","authors":"Marc Hellmuth ,&nbsp;Bruno J. Schmidt ,&nbsp;Guillaume E. Scholz ,&nbsp;Sandhya Thekkumpadan Puthiyaveedu","doi":"10.1016/j.disc.2024.114328","DOIUrl":null,"url":null,"abstract":"<div><div>The Djoković-Winkler relation Θ is a binary relation defined on the edge set of a given graph that is based on the distances of certain vertices and which plays a prominent role in graph theory. In this paper, we explore the relatively uncharted “reflexive complement” <span><math><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></math></span> of Θ, where <span><math><mo>(</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></math></span> if and only if <span><math><mi>e</mi><mo>=</mo><mi>f</mi></math></span> or <span><math><mo>(</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>∉</mo><mi>Θ</mi></math></span> for edges <em>e</em> and <em>f</em>. We establish the relationship between <span><math><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></math></span> and the set <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>e</mi><mi>f</mi></mrow></msub></math></span>, comprising the distances between the vertices of <em>e</em> and <em>f</em> and shed some light on the intricacies of its transitive closure <span><math><msup><mrow><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Notably, we demonstrate that <span><math><msup><mrow><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> exhibits multiple equivalence classes only within a restricted subclass of complete multipartite graphs. In addition, we characterize non-trivial relations <em>R</em> that coincide with <span><math><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></math></span> as those where the graph representation is disconnected, with each connected component being the (join of) Cartesian product of complete graphs. The latter results imply, somewhat surprisingly, that knowledge about the distances between vertices is not required to determine <span><math><msup><mrow><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Moreover, <span><math><msup><mrow><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> has either exactly one or three equivalence classes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 3","pages":"Article 114328"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complement of the Djoković-Winkler relation\",\"authors\":\"Marc Hellmuth ,&nbsp;Bruno J. Schmidt ,&nbsp;Guillaume E. Scholz ,&nbsp;Sandhya Thekkumpadan Puthiyaveedu\",\"doi\":\"10.1016/j.disc.2024.114328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Djoković-Winkler relation Θ is a binary relation defined on the edge set of a given graph that is based on the distances of certain vertices and which plays a prominent role in graph theory. In this paper, we explore the relatively uncharted “reflexive complement” <span><math><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></math></span> of Θ, where <span><math><mo>(</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></math></span> if and only if <span><math><mi>e</mi><mo>=</mo><mi>f</mi></math></span> or <span><math><mo>(</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo>)</mo><mo>∉</mo><mi>Θ</mi></math></span> for edges <em>e</em> and <em>f</em>. We establish the relationship between <span><math><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></math></span> and the set <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>e</mi><mi>f</mi></mrow></msub></math></span>, comprising the distances between the vertices of <em>e</em> and <em>f</em> and shed some light on the intricacies of its transitive closure <span><math><msup><mrow><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Notably, we demonstrate that <span><math><msup><mrow><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> exhibits multiple equivalence classes only within a restricted subclass of complete multipartite graphs. In addition, we characterize non-trivial relations <em>R</em> that coincide with <span><math><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></math></span> as those where the graph representation is disconnected, with each connected component being the (join of) Cartesian product of complete graphs. The latter results imply, somewhat surprisingly, that knowledge about the distances between vertices is not required to determine <span><math><msup><mrow><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Moreover, <span><math><msup><mrow><mover><mrow><mi>Θ</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> has either exactly one or three equivalence classes.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 3\",\"pages\":\"Article 114328\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2400459X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2400459X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

德约科维奇-温克勒关系Θ是一种定义在给定图边集上的二元关系,它以某些顶点的距离为基础,在图论中发挥着重要作用。在本文中,我们探索了相对未知的Θ的 "反向互补 "Θ‾,其中 (e,f)∈Θ‾ if and only if e=f or (e,f)∉Θ for edges e and f。我们建立了Θ‾与由 e 和 f 的顶点之间的距离组成的集合Δef 之间的关系,并阐明了其传递闭包Θ‾⁎的复杂性。值得注意的是,我们证明了Θ‾⁎仅在完全多方图的有限子类中表现出多个等价类。此外,我们将与Θ‾重合的非三元关系 R 定性为那些图表示是断开的关系,其中每个连通分量都是完整图的(连接)笛卡尔积。后面的结果意味着,在确定Θ‾时不需要了解顶点之间的距离,这有点出人意料。此外,Θ‾⁎ 恰好有一个或三个等价类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complement of the Djoković-Winkler relation
The Djoković-Winkler relation Θ is a binary relation defined on the edge set of a given graph that is based on the distances of certain vertices and which plays a prominent role in graph theory. In this paper, we explore the relatively uncharted “reflexive complement” Θ of Θ, where (e,f)Θ if and only if e=f or (e,f)Θ for edges e and f. We establish the relationship between Θ and the set Δef, comprising the distances between the vertices of e and f and shed some light on the intricacies of its transitive closure Θ. Notably, we demonstrate that Θ exhibits multiple equivalence classes only within a restricted subclass of complete multipartite graphs. In addition, we characterize non-trivial relations R that coincide with Θ as those where the graph representation is disconnected, with each connected component being the (join of) Cartesian product of complete graphs. The latter results imply, somewhat surprisingly, that knowledge about the distances between vertices is not required to determine Θ. Moreover, Θ has either exactly one or three equivalence classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信