随机非线性薛定谔方程的显式近似值

IF 2.4 2区 数学 Q1 MATHEMATICS
Jianbo Cui
{"title":"随机非线性薛定谔方程的显式近似值","authors":"Jianbo Cui","doi":"10.1016/j.jde.2024.11.022","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study explicit approximations of stochastic nonlinear Schrödinger equations (SNLSEs). We first prove that the classical explicit numerical approximations are divergent for SNLSEs with polynomial nonlinearities. To enhance the stability, we propose a kind of explicit numerical approximations, and establish the regularity analysis and strong convergence rate of the proposed approximations for SNLSEs. There are two key ingredients in our approach. One ingredient is constructing a logarithmic auxiliary functional and exploiting the Bourgain space to prove new regularity estimates of SNLSEs. Another one is providing a dedicated error decomposition formula and presenting the tail estimates of underlying stochastic processes. In particular, our result answers the strong convergence problem of numerical approximation for 2D SNLSEs.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"419 ","pages":"Pages 1-39"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit approximation for stochastic nonlinear Schrödinger equation\",\"authors\":\"Jianbo Cui\",\"doi\":\"10.1016/j.jde.2024.11.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study explicit approximations of stochastic nonlinear Schrödinger equations (SNLSEs). We first prove that the classical explicit numerical approximations are divergent for SNLSEs with polynomial nonlinearities. To enhance the stability, we propose a kind of explicit numerical approximations, and establish the regularity analysis and strong convergence rate of the proposed approximations for SNLSEs. There are two key ingredients in our approach. One ingredient is constructing a logarithmic auxiliary functional and exploiting the Bourgain space to prove new regularity estimates of SNLSEs. Another one is providing a dedicated error decomposition formula and presenting the tail estimates of underlying stochastic processes. In particular, our result answers the strong convergence problem of numerical approximation for 2D SNLSEs.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"419 \",\"pages\":\"Pages 1-39\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624007381\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007381","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究随机非线性薛定谔方程(SNLSE)的显式近似。我们首先证明了经典的显式数值近似对于具有多项式非线性的 SNLSE 是发散的。为了提高稳定性,我们提出了一种显式数值近似方法,并建立了针对 SNLSE 的近似方法的正则性分析和强收敛率。我们的方法有两个关键要素。一个是构建对数辅助函数,利用布尔干空间证明 SNLSE 的新正则性估计。另一个是提供专门的误差分解公式,并给出底层随机过程的尾估计值。特别是,我们的结果回答了二维 SNLSE 数值逼近的强收敛问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit approximation for stochastic nonlinear Schrödinger equation
In this paper, we study explicit approximations of stochastic nonlinear Schrödinger equations (SNLSEs). We first prove that the classical explicit numerical approximations are divergent for SNLSEs with polynomial nonlinearities. To enhance the stability, we propose a kind of explicit numerical approximations, and establish the regularity analysis and strong convergence rate of the proposed approximations for SNLSEs. There are two key ingredients in our approach. One ingredient is constructing a logarithmic auxiliary functional and exploiting the Bourgain space to prove new regularity estimates of SNLSEs. Another one is providing a dedicated error decomposition formula and presenting the tail estimates of underlying stochastic processes. In particular, our result answers the strong convergence problem of numerical approximation for 2D SNLSEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信