Fabio Paparella, Karni Chauhan, Luc Koenders, Theo Hofman, Mauro Salazar
{"title":"拼车电动自主按需移动:联合优化运营、车队和基础设施设计","authors":"Fabio Paparella, Karni Chauhan, Luc Koenders, Theo Hofman, Mauro Salazar","doi":"10.1016/j.conengprac.2024.106169","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a modeling and design optimization framework for an Electric Autonomous Mobility-on-Demand system that allows for ride-pooling, i.e., multiple users can be transported at the same time towards a similar direction to decrease vehicle hours traveled by the fleet at the cost of additional waiting time and delays caused by detours. In particular, we first devise a multi-layer time-invariant network flow model that jointly captures the position and state of charge of the vehicles. Second, we frame the time-optimal operational problem of the fleet, including charging and ride-pooling decisions as a mixed-integer linear program, whereby we jointly optimize the placement of the charging infrastructure. Finally, we perform a case-study using Manhattan taxi-data. Our results indicate that jointly optimizing the charging infrastructure placement allows to decrease overall energy consumption of the fleet and vehicle hours traveled by approximately 1% compared to a heuristic placement. Most significantly, ride-pooling can decrease such costs considerably more, and up to 45%. Finally, we investigate the impact of the vehicle choice on the energy consumption of the fleet, comparing a lightweight two-seater with a heavier four-seater, whereby our results show that the former and latter designs are most convenient for low- and high-demand areas, respectively.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"154 ","pages":"Article 106169"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ride-pooling Electric Autonomous Mobility-on-Demand: Joint optimization of operations and fleet and infrastructure design\",\"authors\":\"Fabio Paparella, Karni Chauhan, Luc Koenders, Theo Hofman, Mauro Salazar\",\"doi\":\"10.1016/j.conengprac.2024.106169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a modeling and design optimization framework for an Electric Autonomous Mobility-on-Demand system that allows for ride-pooling, i.e., multiple users can be transported at the same time towards a similar direction to decrease vehicle hours traveled by the fleet at the cost of additional waiting time and delays caused by detours. In particular, we first devise a multi-layer time-invariant network flow model that jointly captures the position and state of charge of the vehicles. Second, we frame the time-optimal operational problem of the fleet, including charging and ride-pooling decisions as a mixed-integer linear program, whereby we jointly optimize the placement of the charging infrastructure. Finally, we perform a case-study using Manhattan taxi-data. Our results indicate that jointly optimizing the charging infrastructure placement allows to decrease overall energy consumption of the fleet and vehicle hours traveled by approximately 1% compared to a heuristic placement. Most significantly, ride-pooling can decrease such costs considerably more, and up to 45%. Finally, we investigate the impact of the vehicle choice on the energy consumption of the fleet, comparing a lightweight two-seater with a heavier four-seater, whereby our results show that the former and latter designs are most convenient for low- and high-demand areas, respectively.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"154 \",\"pages\":\"Article 106169\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124003289\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124003289","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Ride-pooling Electric Autonomous Mobility-on-Demand: Joint optimization of operations and fleet and infrastructure design
This paper presents a modeling and design optimization framework for an Electric Autonomous Mobility-on-Demand system that allows for ride-pooling, i.e., multiple users can be transported at the same time towards a similar direction to decrease vehicle hours traveled by the fleet at the cost of additional waiting time and delays caused by detours. In particular, we first devise a multi-layer time-invariant network flow model that jointly captures the position and state of charge of the vehicles. Second, we frame the time-optimal operational problem of the fleet, including charging and ride-pooling decisions as a mixed-integer linear program, whereby we jointly optimize the placement of the charging infrastructure. Finally, we perform a case-study using Manhattan taxi-data. Our results indicate that jointly optimizing the charging infrastructure placement allows to decrease overall energy consumption of the fleet and vehicle hours traveled by approximately 1% compared to a heuristic placement. Most significantly, ride-pooling can decrease such costs considerably more, and up to 45%. Finally, we investigate the impact of the vehicle choice on the energy consumption of the fleet, comparing a lightweight two-seater with a heavier four-seater, whereby our results show that the former and latter designs are most convenient for low- and high-demand areas, respectively.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.