了解用户的人工智能操作意图:人工智能推荐算法背景下的前因实证调查

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Taeyoung Kim, Il Im
{"title":"了解用户的人工智能操作意图:人工智能推荐算法背景下的前因实证调查","authors":"Taeyoung Kim,&nbsp;Il Im","doi":"10.1016/j.im.2024.104061","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines antecedents that drive platform users to manipulate artificial intelligence (AI) recommendation algorithms. Based on the persuasion knowledge model (PKM), survey data collected from YouTube and Instagram users reveal that AI manipulation intentions are positively affected by persuasion knowledge about AI and perceived interactivity. Perceived interactivity is associated with higher perceived benefits and lower perceived costs of AI manipulation, consequently affecting manipulation intentions. A multivariate analysis of variance shows variations in intentions to use different types of AI manipulation behaviors among users with varying levels of persuasion knowledge. The research contributes to the PKM and AI-human interaction literature.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"62 1","pages":"Article 104061"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding users’ AI manipulation intention: An empirical investigation of the antecedents in the context of AI recommendation algorithms\",\"authors\":\"Taeyoung Kim,&nbsp;Il Im\",\"doi\":\"10.1016/j.im.2024.104061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines antecedents that drive platform users to manipulate artificial intelligence (AI) recommendation algorithms. Based on the persuasion knowledge model (PKM), survey data collected from YouTube and Instagram users reveal that AI manipulation intentions are positively affected by persuasion knowledge about AI and perceived interactivity. Perceived interactivity is associated with higher perceived benefits and lower perceived costs of AI manipulation, consequently affecting manipulation intentions. A multivariate analysis of variance shows variations in intentions to use different types of AI manipulation behaviors among users with varying levels of persuasion knowledge. The research contributes to the PKM and AI-human interaction literature.</div></div>\",\"PeriodicalId\":56291,\"journal\":{\"name\":\"Information & Management\",\"volume\":\"62 1\",\"pages\":\"Article 104061\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378720624001435\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720624001435","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了促使平台用户操纵人工智能(AI)推荐算法的前因。基于说服知识模型(PKM),从YouTube和Instagram用户收集的调查数据显示,人工智能操作意愿受到人工智能说服知识和感知互动性的积极影响。感知互动性与人工智能操作的较高感知收益和较低感知成本相关,从而影响操作意图。多变量方差分析显示,不同说服知识水平的用户使用不同类型人工智能操纵行为的意愿存在差异。这项研究对 PKM 和人工智能与人的互动文献有所贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding users’ AI manipulation intention: An empirical investigation of the antecedents in the context of AI recommendation algorithms
This study examines antecedents that drive platform users to manipulate artificial intelligence (AI) recommendation algorithms. Based on the persuasion knowledge model (PKM), survey data collected from YouTube and Instagram users reveal that AI manipulation intentions are positively affected by persuasion knowledge about AI and perceived interactivity. Perceived interactivity is associated with higher perceived benefits and lower perceived costs of AI manipulation, consequently affecting manipulation intentions. A multivariate analysis of variance shows variations in intentions to use different types of AI manipulation behaviors among users with varying levels of persuasion knowledge. The research contributes to the PKM and AI-human interaction literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信