{"title":"俄罗斯研究核反应堆生物屏蔽周围的中子场特征","authors":"M.D. Pyshkina, A.V. Vasilyev, E.I. Nazarov, A.A. Ekidin","doi":"10.1016/j.radmeas.2024.107325","DOIUrl":null,"url":null,"abstract":"<div><div>The paper presents the results of a study of the neutron field characteristics surrounding biological shielding of Russian research nuclear reactors to establish their expected behavior and enhance personnel neutron monitoring. The study covered five nuclear research reactors: IVV-2M, IRT-T, IRT-MEPhI, RBT-6, and SM-3. All reactors are pool-typed; some (RBT-6 and SM-3) have pressurized water, while others (IVV-2M, IRT-T, and IRT-MEPhI) have water under normal pressure. The neutron fields analyzed are located at the tank cover of reactors, in front of the reactor core covered with biological shielding, and in front of the horizontal experimental channel. The spectrum average neutron energy ranges from 0.01 MeV (RBT-6) to 1.0 MeV (SM-3). The fluence-to-ambient dose conversion coefficient varies from 15 pSv <span><math><mrow><mo>∙</mo></mrow></math></span> cm<sup>2</sup> (RBT-6) to 260 pSv <span><math><mrow><mo>∙</mo></mrow></math></span> cm<sup>2</sup> (SM-3). The spectra at the other measurement points exhibit the energy distribution characteristics of the neutron radiation flux density behind the biological shielding.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"180 ","pages":"Article 107325"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of neutron fields around biological shielding of research nuclear reactors in Russia\",\"authors\":\"M.D. Pyshkina, A.V. Vasilyev, E.I. Nazarov, A.A. Ekidin\",\"doi\":\"10.1016/j.radmeas.2024.107325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper presents the results of a study of the neutron field characteristics surrounding biological shielding of Russian research nuclear reactors to establish their expected behavior and enhance personnel neutron monitoring. The study covered five nuclear research reactors: IVV-2M, IRT-T, IRT-MEPhI, RBT-6, and SM-3. All reactors are pool-typed; some (RBT-6 and SM-3) have pressurized water, while others (IVV-2M, IRT-T, and IRT-MEPhI) have water under normal pressure. The neutron fields analyzed are located at the tank cover of reactors, in front of the reactor core covered with biological shielding, and in front of the horizontal experimental channel. The spectrum average neutron energy ranges from 0.01 MeV (RBT-6) to 1.0 MeV (SM-3). The fluence-to-ambient dose conversion coefficient varies from 15 pSv <span><math><mrow><mo>∙</mo></mrow></math></span> cm<sup>2</sup> (RBT-6) to 260 pSv <span><math><mrow><mo>∙</mo></mrow></math></span> cm<sup>2</sup> (SM-3). The spectra at the other measurement points exhibit the energy distribution characteristics of the neutron radiation flux density behind the biological shielding.</div></div>\",\"PeriodicalId\":21055,\"journal\":{\"name\":\"Radiation Measurements\",\"volume\":\"180 \",\"pages\":\"Article 107325\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Measurements\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350448724002737\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002737","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Characteristics of neutron fields around biological shielding of research nuclear reactors in Russia
The paper presents the results of a study of the neutron field characteristics surrounding biological shielding of Russian research nuclear reactors to establish their expected behavior and enhance personnel neutron monitoring. The study covered five nuclear research reactors: IVV-2M, IRT-T, IRT-MEPhI, RBT-6, and SM-3. All reactors are pool-typed; some (RBT-6 and SM-3) have pressurized water, while others (IVV-2M, IRT-T, and IRT-MEPhI) have water under normal pressure. The neutron fields analyzed are located at the tank cover of reactors, in front of the reactor core covered with biological shielding, and in front of the horizontal experimental channel. The spectrum average neutron energy ranges from 0.01 MeV (RBT-6) to 1.0 MeV (SM-3). The fluence-to-ambient dose conversion coefficient varies from 15 pSv cm2 (RBT-6) to 260 pSv cm2 (SM-3). The spectra at the other measurement points exhibit the energy distribution characteristics of the neutron radiation flux density behind the biological shielding.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.