Simon Pillmeier , Stanislav Žák , Reinhard Pippan , Jürgen Eckert , Anton Hohenwarter
{"title":"探索 MoRe 合金的断裂韧性和疲劳裂纹生长行为","authors":"Simon Pillmeier , Stanislav Žák , Reinhard Pippan , Jürgen Eckert , Anton Hohenwarter","doi":"10.1016/j.ijrmhm.2024.106969","DOIUrl":null,"url":null,"abstract":"<div><div>The fracture and fatigue crack growth behavior of two molybdenum alloys, containing 41 wt-% and 47.5 wt-% rhenium, respectively, are investigated. These alloys were provided in form of cold-wrought rods of 6 mm diameter and exhibit a refined microstructure with highly elongated grains and a strong fiber texture. Similarly processed pure molybdenum was used as reference material and exhibits a significantly coarser microstructure. SEN(T) and C(T) specimens were tested with R-L and L-R orientation. In both, quasi-static and fatigue crack growth experiments, L-R oriented cracks immediately kinked by 90° into the direction of grain elongation. This yields fracture toughness values and effective and long crack threshold values about twice as high as for R-L oriented cracks, which is in good agreement with calculations of a reduced local crack driving force. In both MoRe alloys a cyclic R-curve behavior was captured in fatigue crack growth tests at a load ratio of <em>R</em> = 0.1, while for MoRe47.5 it was still present at <em>R</em> = 0.7. This is attributed mainly to the coarser microstructure. The effective thresholds <em>∆K</em><sub><em>th,eff</em></sub> of both MoRe alloys are remarkably low and deviate from a commonly used estimation, especially for the MoRe47.5 material. It is proposed that plasticity in these materials is facilitated by twinning, leading to the emission of partial dislocations from the crack tip. Although no clear microstructural or fractographic evidence was found, a recalculation of <em>∆K</em><sub><em>th,eff</em></sub> considering partial dislocations indicates a good correlation with experimental values.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"127 ","pages":"Article 106969"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the fracture toughness and fatigue crack growth behavior of MoRe alloys\",\"authors\":\"Simon Pillmeier , Stanislav Žák , Reinhard Pippan , Jürgen Eckert , Anton Hohenwarter\",\"doi\":\"10.1016/j.ijrmhm.2024.106969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fracture and fatigue crack growth behavior of two molybdenum alloys, containing 41 wt-% and 47.5 wt-% rhenium, respectively, are investigated. These alloys were provided in form of cold-wrought rods of 6 mm diameter and exhibit a refined microstructure with highly elongated grains and a strong fiber texture. Similarly processed pure molybdenum was used as reference material and exhibits a significantly coarser microstructure. SEN(T) and C(T) specimens were tested with R-L and L-R orientation. In both, quasi-static and fatigue crack growth experiments, L-R oriented cracks immediately kinked by 90° into the direction of grain elongation. This yields fracture toughness values and effective and long crack threshold values about twice as high as for R-L oriented cracks, which is in good agreement with calculations of a reduced local crack driving force. In both MoRe alloys a cyclic R-curve behavior was captured in fatigue crack growth tests at a load ratio of <em>R</em> = 0.1, while for MoRe47.5 it was still present at <em>R</em> = 0.7. This is attributed mainly to the coarser microstructure. The effective thresholds <em>∆K</em><sub><em>th,eff</em></sub> of both MoRe alloys are remarkably low and deviate from a commonly used estimation, especially for the MoRe47.5 material. It is proposed that plasticity in these materials is facilitated by twinning, leading to the emission of partial dislocations from the crack tip. Although no clear microstructural or fractographic evidence was found, a recalculation of <em>∆K</em><sub><em>th,eff</em></sub> considering partial dislocations indicates a good correlation with experimental values.</div></div>\",\"PeriodicalId\":14216,\"journal\":{\"name\":\"International Journal of Refractory Metals & Hard Materials\",\"volume\":\"127 \",\"pages\":\"Article 106969\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refractory Metals & Hard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263436824004177\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824004177","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the fracture toughness and fatigue crack growth behavior of MoRe alloys
The fracture and fatigue crack growth behavior of two molybdenum alloys, containing 41 wt-% and 47.5 wt-% rhenium, respectively, are investigated. These alloys were provided in form of cold-wrought rods of 6 mm diameter and exhibit a refined microstructure with highly elongated grains and a strong fiber texture. Similarly processed pure molybdenum was used as reference material and exhibits a significantly coarser microstructure. SEN(T) and C(T) specimens were tested with R-L and L-R orientation. In both, quasi-static and fatigue crack growth experiments, L-R oriented cracks immediately kinked by 90° into the direction of grain elongation. This yields fracture toughness values and effective and long crack threshold values about twice as high as for R-L oriented cracks, which is in good agreement with calculations of a reduced local crack driving force. In both MoRe alloys a cyclic R-curve behavior was captured in fatigue crack growth tests at a load ratio of R = 0.1, while for MoRe47.5 it was still present at R = 0.7. This is attributed mainly to the coarser microstructure. The effective thresholds ∆Kth,eff of both MoRe alloys are remarkably low and deviate from a commonly used estimation, especially for the MoRe47.5 material. It is proposed that plasticity in these materials is facilitated by twinning, leading to the emission of partial dislocations from the crack tip. Although no clear microstructural or fractographic evidence was found, a recalculation of ∆Kth,eff considering partial dislocations indicates a good correlation with experimental values.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.