Youwang Hu , Shoutao Chen , Dejian Kong , Mingyang Yang , Xiaoyan Sun , Ji'an Duan
{"title":"在金刚石表面设计和制造亚波长抗反射微结构","authors":"Youwang Hu , Shoutao Chen , Dejian Kong , Mingyang Yang , Xiaoyan Sun , Ji'an Duan","doi":"10.1016/j.optcom.2024.131316","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, subwavelength microstructures on diamond have been investigated numerically and experimentally to attain high transmittance over a broad bandwidth in the mid-infrared(MIR) wavelength range of 8∼14 μm.A simulation model was established using FDTD software to theoretically investigate the influence of changes in microstructure parameters on the transmittance enhancement performance, and the relationship between microstructure parameters and transmittance was macroscopically demonstrated based on infrared spectral value distribution diagrams. Fabrication of square frustum microstructure arrays on diamond surfaces by airflow-assisted femtosecond laser in an air environment. The structure was created on a single work surface. The fabricated samples achieved full-wavelength transmittance enhancement in the MIR band from 8 μm to 14 μm, and the average transmittance was increased from 70.0% to 77.5%, of which the transmittance at 9 μm wavelength was increased by 8.3%. The experimental results illustrate that the fabricated microstructures have good transmittance enhancement performance.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131316"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and fabrication of subwavelength antireflective microstructures on diamond surfaces\",\"authors\":\"Youwang Hu , Shoutao Chen , Dejian Kong , Mingyang Yang , Xiaoyan Sun , Ji'an Duan\",\"doi\":\"10.1016/j.optcom.2024.131316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, subwavelength microstructures on diamond have been investigated numerically and experimentally to attain high transmittance over a broad bandwidth in the mid-infrared(MIR) wavelength range of 8∼14 μm.A simulation model was established using FDTD software to theoretically investigate the influence of changes in microstructure parameters on the transmittance enhancement performance, and the relationship between microstructure parameters and transmittance was macroscopically demonstrated based on infrared spectral value distribution diagrams. Fabrication of square frustum microstructure arrays on diamond surfaces by airflow-assisted femtosecond laser in an air environment. The structure was created on a single work surface. The fabricated samples achieved full-wavelength transmittance enhancement in the MIR band from 8 μm to 14 μm, and the average transmittance was increased from 70.0% to 77.5%, of which the transmittance at 9 μm wavelength was increased by 8.3%. The experimental results illustrate that the fabricated microstructures have good transmittance enhancement performance.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"575 \",\"pages\":\"Article 131316\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401824010538\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824010538","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Design and fabrication of subwavelength antireflective microstructures on diamond surfaces
In this study, subwavelength microstructures on diamond have been investigated numerically and experimentally to attain high transmittance over a broad bandwidth in the mid-infrared(MIR) wavelength range of 8∼14 μm.A simulation model was established using FDTD software to theoretically investigate the influence of changes in microstructure parameters on the transmittance enhancement performance, and the relationship between microstructure parameters and transmittance was macroscopically demonstrated based on infrared spectral value distribution diagrams. Fabrication of square frustum microstructure arrays on diamond surfaces by airflow-assisted femtosecond laser in an air environment. The structure was created on a single work surface. The fabricated samples achieved full-wavelength transmittance enhancement in the MIR band from 8 μm to 14 μm, and the average transmittance was increased from 70.0% to 77.5%, of which the transmittance at 9 μm wavelength was increased by 8.3%. The experimental results illustrate that the fabricated microstructures have good transmittance enhancement performance.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.