Sizhe Lin , Tao Ye , Xinyu Zhang , Hui Zuo , Linxi Zhu , Xiuxia Wang , Changlong Li , Zhi Yang , Ran Du , Dewu Lin , Yue Hu
{"title":"利用 \"热泳-锚定 \"协同策略制备的非金属催化剂生长的水平半导体碳纳米管阵列","authors":"Sizhe Lin , Tao Ye , Xinyu Zhang , Hui Zuo , Linxi Zhu , Xiuxia Wang , Changlong Li , Zhi Yang , Ran Du , Dewu Lin , Yue Hu","doi":"10.1016/j.nantod.2024.102562","DOIUrl":null,"url":null,"abstract":"<div><div>The fabrication of uncontaminated single-walled carbon nanotube (SWNT) horizontal arrays is crucial for the development of carbon-based nanoelectronics. However, chemical vapor deposition (CVD) using transition metal catalysts, one of the main methods for preparing SWNT arrays, leaves a significant amount of metal impurities. Here, we report a synergistic thermophoresis-anchoring strategy to prepare uniformly dispersed and size-controllable non-metal SiO<sub>x</sub> catalysts for the growth of horizontal SWNT arrays. The pyrolysis of silicon-based precursors generates an abundant supply of SiO<sub>x</sub> particles, which are deposited bottom-up onto the quartz substrate due to the thermal buoyancy induced by a rapid temperature increase. Meanwhile, Surface reconstruction promoted by mechanical force creates numerous anchoring sites on the quartz substrate. This facilitates the capture of catalysts and suppresses their migration and aggregation, thereby promoting the uniform deposition of small-sized catalysts. Consequently, SWNT arrays with a density of 9 tubes per micron are synthesized using these nonmetal SiO<sub>x</sub> catalysts. Importantly, Raman spectroscopy and electrical characterization reveal a semiconductor ratio of up to 94 % for the directly grown SWNT arrays, which is attributed to an in situ etching mechanism within the confined space. This work provides a viable way to promote the practical application of next-generation carbon-based nanodevices.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102562"},"PeriodicalIF":13.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arrays of horizontal semiconducting carbon nanotubes grown from non-metal catalysts prepared by a “thermophoresis-anchoring” synergistic strategy\",\"authors\":\"Sizhe Lin , Tao Ye , Xinyu Zhang , Hui Zuo , Linxi Zhu , Xiuxia Wang , Changlong Li , Zhi Yang , Ran Du , Dewu Lin , Yue Hu\",\"doi\":\"10.1016/j.nantod.2024.102562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fabrication of uncontaminated single-walled carbon nanotube (SWNT) horizontal arrays is crucial for the development of carbon-based nanoelectronics. However, chemical vapor deposition (CVD) using transition metal catalysts, one of the main methods for preparing SWNT arrays, leaves a significant amount of metal impurities. Here, we report a synergistic thermophoresis-anchoring strategy to prepare uniformly dispersed and size-controllable non-metal SiO<sub>x</sub> catalysts for the growth of horizontal SWNT arrays. The pyrolysis of silicon-based precursors generates an abundant supply of SiO<sub>x</sub> particles, which are deposited bottom-up onto the quartz substrate due to the thermal buoyancy induced by a rapid temperature increase. Meanwhile, Surface reconstruction promoted by mechanical force creates numerous anchoring sites on the quartz substrate. This facilitates the capture of catalysts and suppresses their migration and aggregation, thereby promoting the uniform deposition of small-sized catalysts. Consequently, SWNT arrays with a density of 9 tubes per micron are synthesized using these nonmetal SiO<sub>x</sub> catalysts. Importantly, Raman spectroscopy and electrical characterization reveal a semiconductor ratio of up to 94 % for the directly grown SWNT arrays, which is attributed to an in situ etching mechanism within the confined space. This work provides a viable way to promote the practical application of next-generation carbon-based nanodevices.</div></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"61 \",\"pages\":\"Article 102562\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224004183\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224004183","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Arrays of horizontal semiconducting carbon nanotubes grown from non-metal catalysts prepared by a “thermophoresis-anchoring” synergistic strategy
The fabrication of uncontaminated single-walled carbon nanotube (SWNT) horizontal arrays is crucial for the development of carbon-based nanoelectronics. However, chemical vapor deposition (CVD) using transition metal catalysts, one of the main methods for preparing SWNT arrays, leaves a significant amount of metal impurities. Here, we report a synergistic thermophoresis-anchoring strategy to prepare uniformly dispersed and size-controllable non-metal SiOx catalysts for the growth of horizontal SWNT arrays. The pyrolysis of silicon-based precursors generates an abundant supply of SiOx particles, which are deposited bottom-up onto the quartz substrate due to the thermal buoyancy induced by a rapid temperature increase. Meanwhile, Surface reconstruction promoted by mechanical force creates numerous anchoring sites on the quartz substrate. This facilitates the capture of catalysts and suppresses their migration and aggregation, thereby promoting the uniform deposition of small-sized catalysts. Consequently, SWNT arrays with a density of 9 tubes per micron are synthesized using these nonmetal SiOx catalysts. Importantly, Raman spectroscopy and electrical characterization reveal a semiconductor ratio of up to 94 % for the directly grown SWNT arrays, which is attributed to an in situ etching mechanism within the confined space. This work provides a viable way to promote the practical application of next-generation carbon-based nanodevices.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.