具有不精确模型的加速分散随机优化算法

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Xuexue Zhang , Sanyang Liu , Nannan Zhao
{"title":"具有不精确模型的加速分散随机优化算法","authors":"Xuexue Zhang ,&nbsp;Sanyang Liu ,&nbsp;Nannan Zhao","doi":"10.1016/j.cam.2024.116383","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the decentralized stochastic optimization problems where each node of network has only access to the local large data samples and local functions, which are distributed to the computational nodes. We extend the centralized fast adaptive gradient method with inexact model to deal with the large scale problem in the decentralized manner. Moreover, we propose an accelerated decentralized stochastic optimization algorithm with reconstructing parameter equations and defining new approximate local functions. Further, we provide the convergence analysis of the proposed algorithm and illustrate that our algorithm can achieve both the optimal stochastic oracle complexity and communication complexity that depend on the global condition number. Finally, the numerical experiments validate the convergence results of the proposed algorithm.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"459 ","pages":"Article 116383"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An accelerated decentralized stochastic optimization algorithm with inexact model\",\"authors\":\"Xuexue Zhang ,&nbsp;Sanyang Liu ,&nbsp;Nannan Zhao\",\"doi\":\"10.1016/j.cam.2024.116383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers the decentralized stochastic optimization problems where each node of network has only access to the local large data samples and local functions, which are distributed to the computational nodes. We extend the centralized fast adaptive gradient method with inexact model to deal with the large scale problem in the decentralized manner. Moreover, we propose an accelerated decentralized stochastic optimization algorithm with reconstructing parameter equations and defining new approximate local functions. Further, we provide the convergence analysis of the proposed algorithm and illustrate that our algorithm can achieve both the optimal stochastic oracle complexity and communication complexity that depend on the global condition number. Finally, the numerical experiments validate the convergence results of the proposed algorithm.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"459 \",\"pages\":\"Article 116383\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724006319\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006319","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑的是分散式随机优化问题,即网络中的每个节点只能访问本地的大数据样本和本地函数,而这些样本和函数分布在计算节点上。我们扩展了具有不精确模型的集中式快速自适应梯度法,以分散方式处理大规模问题。此外,我们还提出了一种加速分散随机优化算法,该算法具有重构参数方程和定义新近似局部函数的功能。此外,我们还提供了所提算法的收敛性分析,并说明我们的算法可以同时实现取决于全局条件数的最优随机神谕复杂度和通信复杂度。最后,数值实验验证了所提算法的收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An accelerated decentralized stochastic optimization algorithm with inexact model
This paper considers the decentralized stochastic optimization problems where each node of network has only access to the local large data samples and local functions, which are distributed to the computational nodes. We extend the centralized fast adaptive gradient method with inexact model to deal with the large scale problem in the decentralized manner. Moreover, we propose an accelerated decentralized stochastic optimization algorithm with reconstructing parameter equations and defining new approximate local functions. Further, we provide the convergence analysis of the proposed algorithm and illustrate that our algorithm can achieve both the optimal stochastic oracle complexity and communication complexity that depend on the global condition number. Finally, the numerical experiments validate the convergence results of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信