{"title":"关于狄拉克系统的哈密顿公式","authors":"Bence Juhász , László Árpád Gergely","doi":"10.1016/j.aop.2024.169855","DOIUrl":null,"url":null,"abstract":"<div><div>We extend a previously successful discussion of the constrained Schrödinger system through the Dirac–Bergmann algorithm to the case of the Dirac field. In order to follow the analogy, first we discuss the classical Dirac field as a spinorial variable, by introducing properly defined momenta and a suitably modified, factor ordered Poisson bracket. According to the Dirac–Bergmann algorithm two second class Hamiltonian constraints emerge, leading to a factor ordered Dirac bracket on the full phase space. This becomes the Poisson bracket on the reduced phase space in the canonical chart adapted to the shell. The Dirac equation is recovered both as consistency condition on the full phase space and as canonical equation on the reduced phase space. Alternatively, considering the Dirac field as odd Grassmann variable, we present the details of the Dirac–Bergmann algorithm (with either left and right derivatives acting on Grassmann valued superfunctions and involving a different type of generalized Poisson and Dirac brackets). We propose a recipe for the canonical second quantization of all three versions of the generalized Dirac brackets, yielding the correct fundamental anticommutator.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"472 ","pages":"Article 169855"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Hamiltonian formulations of the Dirac system\",\"authors\":\"Bence Juhász , László Árpád Gergely\",\"doi\":\"10.1016/j.aop.2024.169855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We extend a previously successful discussion of the constrained Schrödinger system through the Dirac–Bergmann algorithm to the case of the Dirac field. In order to follow the analogy, first we discuss the classical Dirac field as a spinorial variable, by introducing properly defined momenta and a suitably modified, factor ordered Poisson bracket. According to the Dirac–Bergmann algorithm two second class Hamiltonian constraints emerge, leading to a factor ordered Dirac bracket on the full phase space. This becomes the Poisson bracket on the reduced phase space in the canonical chart adapted to the shell. The Dirac equation is recovered both as consistency condition on the full phase space and as canonical equation on the reduced phase space. Alternatively, considering the Dirac field as odd Grassmann variable, we present the details of the Dirac–Bergmann algorithm (with either left and right derivatives acting on Grassmann valued superfunctions and involving a different type of generalized Poisson and Dirac brackets). We propose a recipe for the canonical second quantization of all three versions of the generalized Dirac brackets, yielding the correct fundamental anticommutator.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"472 \",\"pages\":\"Article 169855\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624002628\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002628","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
We extend a previously successful discussion of the constrained Schrödinger system through the Dirac–Bergmann algorithm to the case of the Dirac field. In order to follow the analogy, first we discuss the classical Dirac field as a spinorial variable, by introducing properly defined momenta and a suitably modified, factor ordered Poisson bracket. According to the Dirac–Bergmann algorithm two second class Hamiltonian constraints emerge, leading to a factor ordered Dirac bracket on the full phase space. This becomes the Poisson bracket on the reduced phase space in the canonical chart adapted to the shell. The Dirac equation is recovered both as consistency condition on the full phase space and as canonical equation on the reduced phase space. Alternatively, considering the Dirac field as odd Grassmann variable, we present the details of the Dirac–Bergmann algorithm (with either left and right derivatives acting on Grassmann valued superfunctions and involving a different type of generalized Poisson and Dirac brackets). We propose a recipe for the canonical second quantization of all three versions of the generalized Dirac brackets, yielding the correct fundamental anticommutator.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.