Marco A. Tun-Carrillo , Miguel E. Mora-Ramos , Hernán A. Gómez-Urrea , Ignacio V. Pérez-Quintana
{"title":"基于准周期鲁丁-夏皮罗序列的一维多层结构的光子特性","authors":"Marco A. Tun-Carrillo , Miguel E. Mora-Ramos , Hernán A. Gómez-Urrea , Ignacio V. Pérez-Quintana","doi":"10.1016/j.aop.2024.169860","DOIUrl":null,"url":null,"abstract":"<div><div>A theoretical study of some properties of light propagation in Rudin–Shapiro one-dimensional photonic heterostructures is presented. Particular attention is paid to hybrid periodic–quasiperiodic–periodic systems that include the Rudin–Shapiro sequence design in the non-periodic regions. Features such as omnidirectional reflection, spatial mode localization and full photonic band gap are discussed for different cases. The calculation tool employed is the transfer matrix/scattering matrix technique. The proposed hybrid heterostructure then are used as unitary cells of a photonic crystal which shows wide omnidirectional full gaps in the infrared regions of work. In some of the structures investigated, the proposal involves different pattern of dielectric contrast appears for the periodic part and for the quasiperiodic part.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"472 ","pages":"Article 169860"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic properties of 1D multilayered structures based on quasiperiodic Rudin–Shapiro sequence\",\"authors\":\"Marco A. Tun-Carrillo , Miguel E. Mora-Ramos , Hernán A. Gómez-Urrea , Ignacio V. Pérez-Quintana\",\"doi\":\"10.1016/j.aop.2024.169860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A theoretical study of some properties of light propagation in Rudin–Shapiro one-dimensional photonic heterostructures is presented. Particular attention is paid to hybrid periodic–quasiperiodic–periodic systems that include the Rudin–Shapiro sequence design in the non-periodic regions. Features such as omnidirectional reflection, spatial mode localization and full photonic band gap are discussed for different cases. The calculation tool employed is the transfer matrix/scattering matrix technique. The proposed hybrid heterostructure then are used as unitary cells of a photonic crystal which shows wide omnidirectional full gaps in the infrared regions of work. In some of the structures investigated, the proposal involves different pattern of dielectric contrast appears for the periodic part and for the quasiperiodic part.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"472 \",\"pages\":\"Article 169860\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624002677\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002677","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Photonic properties of 1D multilayered structures based on quasiperiodic Rudin–Shapiro sequence
A theoretical study of some properties of light propagation in Rudin–Shapiro one-dimensional photonic heterostructures is presented. Particular attention is paid to hybrid periodic–quasiperiodic–periodic systems that include the Rudin–Shapiro sequence design in the non-periodic regions. Features such as omnidirectional reflection, spatial mode localization and full photonic band gap are discussed for different cases. The calculation tool employed is the transfer matrix/scattering matrix technique. The proposed hybrid heterostructure then are used as unitary cells of a photonic crystal which shows wide omnidirectional full gaps in the infrared regions of work. In some of the structures investigated, the proposal involves different pattern of dielectric contrast appears for the periodic part and for the quasiperiodic part.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.