Adewale M. Sedara , Mohamed A.A. Abdeldayem , Francisco Pratas Glycerio de Freitas , Tekeste Z. Mehari
{"title":"利用基于模拟的 DEM 仿真和粘性摩擦人工土壤的土仓测试优化底土机设计","authors":"Adewale M. Sedara , Mohamed A.A. Abdeldayem , Francisco Pratas Glycerio de Freitas , Tekeste Z. Mehari","doi":"10.1016/j.jterra.2024.101026","DOIUrl":null,"url":null,"abstract":"<div><div>The study highlights the need for effective and efficient methods in designing tillage shanks to alleviate deep soil compaction, especially in wet soil conditions. Current techniques relying on full-scale tillage tools testing are prone to costly and time-consuming engineering product development cycles. DEM simulation of soil-to-shank interaction was utilized for screening twelve geometrically scaled (1:5.63) shanks to top-ranked six shanks, aiming reduced soil horizontal forces and maximum bulk density difference. Six scaled shanks (a straight, a bent, and four paraplow shapes) were fabricated and tested using a split-plot design soil bin experiment on cohesive-frictional artificial soil to investigate their performances on soil reaction forces and soil loosening parameters. Shank design had significant effects (<em>p</em> < 0.05) on energy responses (soil horizontal and vertical reaction forces), above-ground soil loosening (cross-sectional area, trench width, bulk density difference), and below-ground soil loosening (soil rupture area, D1 and D2) parameters. Using an optimization profiler, S-3 (β = 60°, α = 45°) demonstrated the best overall desirability score (0.58) with objectives reducing soil reaction forces and maximizing soil loosening. Manufacturing the S-3 to a full scale is proposed for evaluating its efficiency in tillage energy and soil loosening on field soil conditions for subsoil compaction management.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"117 ","pages":"Article 101026"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of subsoiler design using similitude-based DEM simulation and soil bin testing on cohesive-frictional artificial soil\",\"authors\":\"Adewale M. Sedara , Mohamed A.A. Abdeldayem , Francisco Pratas Glycerio de Freitas , Tekeste Z. Mehari\",\"doi\":\"10.1016/j.jterra.2024.101026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study highlights the need for effective and efficient methods in designing tillage shanks to alleviate deep soil compaction, especially in wet soil conditions. Current techniques relying on full-scale tillage tools testing are prone to costly and time-consuming engineering product development cycles. DEM simulation of soil-to-shank interaction was utilized for screening twelve geometrically scaled (1:5.63) shanks to top-ranked six shanks, aiming reduced soil horizontal forces and maximum bulk density difference. Six scaled shanks (a straight, a bent, and four paraplow shapes) were fabricated and tested using a split-plot design soil bin experiment on cohesive-frictional artificial soil to investigate their performances on soil reaction forces and soil loosening parameters. Shank design had significant effects (<em>p</em> < 0.05) on energy responses (soil horizontal and vertical reaction forces), above-ground soil loosening (cross-sectional area, trench width, bulk density difference), and below-ground soil loosening (soil rupture area, D1 and D2) parameters. Using an optimization profiler, S-3 (β = 60°, α = 45°) demonstrated the best overall desirability score (0.58) with objectives reducing soil reaction forces and maximizing soil loosening. Manufacturing the S-3 to a full scale is proposed for evaluating its efficiency in tillage energy and soil loosening on field soil conditions for subsoil compaction management.</div></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"117 \",\"pages\":\"Article 101026\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489824000685\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000685","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Optimization of subsoiler design using similitude-based DEM simulation and soil bin testing on cohesive-frictional artificial soil
The study highlights the need for effective and efficient methods in designing tillage shanks to alleviate deep soil compaction, especially in wet soil conditions. Current techniques relying on full-scale tillage tools testing are prone to costly and time-consuming engineering product development cycles. DEM simulation of soil-to-shank interaction was utilized for screening twelve geometrically scaled (1:5.63) shanks to top-ranked six shanks, aiming reduced soil horizontal forces and maximum bulk density difference. Six scaled shanks (a straight, a bent, and four paraplow shapes) were fabricated and tested using a split-plot design soil bin experiment on cohesive-frictional artificial soil to investigate their performances on soil reaction forces and soil loosening parameters. Shank design had significant effects (p < 0.05) on energy responses (soil horizontal and vertical reaction forces), above-ground soil loosening (cross-sectional area, trench width, bulk density difference), and below-ground soil loosening (soil rupture area, D1 and D2) parameters. Using an optimization profiler, S-3 (β = 60°, α = 45°) demonstrated the best overall desirability score (0.58) with objectives reducing soil reaction forces and maximizing soil loosening. Manufacturing the S-3 to a full scale is proposed for evaluating its efficiency in tillage energy and soil loosening on field soil conditions for subsoil compaction management.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.