Qilei Xu , Bin Lian , Yan Long , Baoming Shan , Xuezhong Wang , Fangkun Zhang
{"title":"考虑晶体生长、成核和溶解的批量冷却结晶系统优化。第一部分:模拟","authors":"Qilei Xu , Bin Lian , Yan Long , Baoming Shan , Xuezhong Wang , Fangkun Zhang","doi":"10.1016/j.partic.2024.10.018","DOIUrl":null,"url":null,"abstract":"<div><div>Optimal control of batch crystallization systems is still a focus and hot topic in the field of industrial crystallization, which seriously affects the consistency of batch product quality. In this paper, a new method with a new objective function and improved optimization algorithm was proposed for optimization of crystal size distribution (CSD) in case of fine crystals occurrence. The new objective function was developed with better margin metric and weighting technique to minimize fine crystal mass, meanwhile, a newly constructed sinusoidal weight function was introduced to improve the particle swarm optimization (PSO) algorithm. A precise control of CSD with suppressed numerical discrepancy caused by fine crystals removal was developed by combining seed recipe and temperature-swing. In addition, the effects of temperature curve segments on CSD during process optimization were systematically investigated to achieve optimal results. Two typical batch cooling crystallization systems were used to verify the effectiveness of the proposed method in controlling product CSD while minimizing fine crystal mass. Results demonstrated that the desired product CSD can be achieved with minor errors while the fine crystals could be shrunk to be negligible, i.e., the fine crystal mass and number can be reduced by over 90%. This work has an important guiding significance for the removal of fine crystals in industrial crystallization processes, especially when only operational optimization rather than equipment updating is considered.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"96 ","pages":"Pages 84-96"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of batch cooling crystallization systems considering crystal growth, nucleation and dissolution. Part I: Simulation\",\"authors\":\"Qilei Xu , Bin Lian , Yan Long , Baoming Shan , Xuezhong Wang , Fangkun Zhang\",\"doi\":\"10.1016/j.partic.2024.10.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimal control of batch crystallization systems is still a focus and hot topic in the field of industrial crystallization, which seriously affects the consistency of batch product quality. In this paper, a new method with a new objective function and improved optimization algorithm was proposed for optimization of crystal size distribution (CSD) in case of fine crystals occurrence. The new objective function was developed with better margin metric and weighting technique to minimize fine crystal mass, meanwhile, a newly constructed sinusoidal weight function was introduced to improve the particle swarm optimization (PSO) algorithm. A precise control of CSD with suppressed numerical discrepancy caused by fine crystals removal was developed by combining seed recipe and temperature-swing. In addition, the effects of temperature curve segments on CSD during process optimization were systematically investigated to achieve optimal results. Two typical batch cooling crystallization systems were used to verify the effectiveness of the proposed method in controlling product CSD while minimizing fine crystal mass. Results demonstrated that the desired product CSD can be achieved with minor errors while the fine crystals could be shrunk to be negligible, i.e., the fine crystal mass and number can be reduced by over 90%. This work has an important guiding significance for the removal of fine crystals in industrial crystallization processes, especially when only operational optimization rather than equipment updating is considered.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"96 \",\"pages\":\"Pages 84-96\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124002189\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002189","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Optimization of batch cooling crystallization systems considering crystal growth, nucleation and dissolution. Part I: Simulation
Optimal control of batch crystallization systems is still a focus and hot topic in the field of industrial crystallization, which seriously affects the consistency of batch product quality. In this paper, a new method with a new objective function and improved optimization algorithm was proposed for optimization of crystal size distribution (CSD) in case of fine crystals occurrence. The new objective function was developed with better margin metric and weighting technique to minimize fine crystal mass, meanwhile, a newly constructed sinusoidal weight function was introduced to improve the particle swarm optimization (PSO) algorithm. A precise control of CSD with suppressed numerical discrepancy caused by fine crystals removal was developed by combining seed recipe and temperature-swing. In addition, the effects of temperature curve segments on CSD during process optimization were systematically investigated to achieve optimal results. Two typical batch cooling crystallization systems were used to verify the effectiveness of the proposed method in controlling product CSD while minimizing fine crystal mass. Results demonstrated that the desired product CSD can be achieved with minor errors while the fine crystals could be shrunk to be negligible, i.e., the fine crystal mass and number can be reduced by over 90%. This work has an important guiding significance for the removal of fine crystals in industrial crystallization processes, especially when only operational optimization rather than equipment updating is considered.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.