用 Cu3SnS4 装饰的石墨烯作为染料敏化太阳能电池的对电极和降解四环素类抗生素的双重用途

IF 3.8 Q2 CHEMISTRY, PHYSICAL
A. Manimozhi , T. Sumathi , Sreeja Saravanan , N. Dhachanamoorthi , M. Saravanakumar , Kaliyamurthy Jayaprakash
{"title":"用 Cu3SnS4 装饰的石墨烯作为染料敏化太阳能电池的对电极和降解四环素类抗生素的双重用途","authors":"A. Manimozhi ,&nbsp;T. Sumathi ,&nbsp;Sreeja Saravanan ,&nbsp;N. Dhachanamoorthi ,&nbsp;M. Saravanakumar ,&nbsp;Kaliyamurthy Jayaprakash","doi":"10.1016/j.chphi.2024.100779","DOIUrl":null,"url":null,"abstract":"<div><div>This article describes the synthesis of a series of Cu<sub>3</sub>SnS<sub>4</sub>/graphene composites using a simple one-pot solvothermal technique. XRD, SEM, TEM, Raman, UV–visible absorption, PL, and N<sub>2</sub> adsorption-desorption isotherms characterised sample structure, morphology, optical characteristics, and porosity. XRD and TEM examinations show that Cu<sub>3</sub>SnS<sub>4</sub> has a tetragonal crsyalline structure with spherical nanoparticles of 30–35 nm equally distributed over graphene sheets.. The band gap was determined to be 3.35, 3.12, 2.92, and 2.63 eV for Cu<sub>3</sub>SnS<sub>4</sub>, CSSG1, CSSG2, and CSSG5 CEs, respectively. CSSG5 CEs exhibits strong SSA (117.5 m<sup>2</sup>/g and 36.4 nm) and PS, which are about 2.2 times higher than those of pure Cu<sub>3</sub>SnS<sub>4</sub> (52.3 m<sup>2</sup>/g and 13.4 nm). As a result, the DSSC equipped with Cu<sub>3</sub>SnS<sub>4</sub>/graphene (50 mg) nanocomposite CE achieved a power conversion efficiency (PCE) of 10.21 %, which was higher than that of using Cu<sub>3</sub>SnS<sub>4</sub> nanoparticles (4.22 %) and comparable to the 5.91 % obtained with pure Pt CE as a reference. The nanohybrid structure of catalyst-active Cu<sub>3</sub>SnS<sub>4</sub> nanoparticles established on electrically conducting 2D graphene sheets provides fast ion diffusion pathways, a large accessible surface area, and superb chemical and thermal stability, improving the electrode's performance. This research offers an alternative CE in non-Pt system materials and a better solution in other fields. Moreover, the CSSG5 sample showed high degradation percentage (95 %), rate constant (0.5612 min<sup>-1</sup>) and long-term stability towards tetracycline (TC) under visible light irradiation.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100779"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual purpose of graphene decorated with Cu3SnS4 as a counter electrode for dye sensitized solar cells and degradation of tetracycline antibiotics\",\"authors\":\"A. Manimozhi ,&nbsp;T. Sumathi ,&nbsp;Sreeja Saravanan ,&nbsp;N. Dhachanamoorthi ,&nbsp;M. Saravanakumar ,&nbsp;Kaliyamurthy Jayaprakash\",\"doi\":\"10.1016/j.chphi.2024.100779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article describes the synthesis of a series of Cu<sub>3</sub>SnS<sub>4</sub>/graphene composites using a simple one-pot solvothermal technique. XRD, SEM, TEM, Raman, UV–visible absorption, PL, and N<sub>2</sub> adsorption-desorption isotherms characterised sample structure, morphology, optical characteristics, and porosity. XRD and TEM examinations show that Cu<sub>3</sub>SnS<sub>4</sub> has a tetragonal crsyalline structure with spherical nanoparticles of 30–35 nm equally distributed over graphene sheets.. The band gap was determined to be 3.35, 3.12, 2.92, and 2.63 eV for Cu<sub>3</sub>SnS<sub>4</sub>, CSSG1, CSSG2, and CSSG5 CEs, respectively. CSSG5 CEs exhibits strong SSA (117.5 m<sup>2</sup>/g and 36.4 nm) and PS, which are about 2.2 times higher than those of pure Cu<sub>3</sub>SnS<sub>4</sub> (52.3 m<sup>2</sup>/g and 13.4 nm). As a result, the DSSC equipped with Cu<sub>3</sub>SnS<sub>4</sub>/graphene (50 mg) nanocomposite CE achieved a power conversion efficiency (PCE) of 10.21 %, which was higher than that of using Cu<sub>3</sub>SnS<sub>4</sub> nanoparticles (4.22 %) and comparable to the 5.91 % obtained with pure Pt CE as a reference. The nanohybrid structure of catalyst-active Cu<sub>3</sub>SnS<sub>4</sub> nanoparticles established on electrically conducting 2D graphene sheets provides fast ion diffusion pathways, a large accessible surface area, and superb chemical and thermal stability, improving the electrode's performance. This research offers an alternative CE in non-Pt system materials and a better solution in other fields. Moreover, the CSSG5 sample showed high degradation percentage (95 %), rate constant (0.5612 min<sup>-1</sup>) and long-term stability towards tetracycline (TC) under visible light irradiation.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"10 \",\"pages\":\"Article 100779\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022424003232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424003232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了利用简单的一锅溶热技术合成一系列 Cu3SnS4/ 石墨烯复合材料的过程。XRD、SEM、TEM、拉曼、紫外-可见吸收、PL 和 N2 吸附-解吸等温线表征了样品的结构、形态、光学特性和孔隙率。XRD 和 TEM 检验表明,Cu3SnS4 具有四方菱形结构,石墨烯片上平均分布着 30-35 nm 的球形纳米颗粒。经测定,Cu3SnS4、CSSG1、CSSG2 和 CSSG5 CE 的带隙分别为 3.35、3.12、2.92 和 2.63 eV。CSSG5 CEs 表现出较强的 SSA(117.5 m2/g 和 36.4 nm)和 PS,是纯 Cu3SnS4 的 2.2 倍(52.3 m2/g 和 13.4 nm)。因此,装有 Cu3SnS4/ 石墨烯(50 毫克)纳米复合 CE 的 DSSC 实现了 10.21 % 的功率转换效率(PCE),高于使用 Cu3SnS4 纳米粒子的功率转换效率(4.22 %),与作为参考的纯 Pt CE 的功率转换效率(5.91 %)相当。建立在导电二维石墨烯片上的催化剂活性 Cu3SnS4 纳米粒子的纳米杂化结构提供了快速的离子扩散途径、较大的可触及表面积以及极佳的化学和热稳定性,从而提高了电极的性能。这项研究为非铂体系材料提供了一种替代的 CE,也为其他领域提供了更好的解决方案。此外,在可见光照射下,CSSG5 样品对四环素(TC)具有较高的降解率(95%)、速率常数(0.5612 min-1)和长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual purpose of graphene decorated with Cu3SnS4 as a counter electrode for dye sensitized solar cells and degradation of tetracycline antibiotics

Dual purpose of graphene decorated with Cu3SnS4 as a counter electrode for dye sensitized solar cells and degradation of tetracycline antibiotics
This article describes the synthesis of a series of Cu3SnS4/graphene composites using a simple one-pot solvothermal technique. XRD, SEM, TEM, Raman, UV–visible absorption, PL, and N2 adsorption-desorption isotherms characterised sample structure, morphology, optical characteristics, and porosity. XRD and TEM examinations show that Cu3SnS4 has a tetragonal crsyalline structure with spherical nanoparticles of 30–35 nm equally distributed over graphene sheets.. The band gap was determined to be 3.35, 3.12, 2.92, and 2.63 eV for Cu3SnS4, CSSG1, CSSG2, and CSSG5 CEs, respectively. CSSG5 CEs exhibits strong SSA (117.5 m2/g and 36.4 nm) and PS, which are about 2.2 times higher than those of pure Cu3SnS4 (52.3 m2/g and 13.4 nm). As a result, the DSSC equipped with Cu3SnS4/graphene (50 mg) nanocomposite CE achieved a power conversion efficiency (PCE) of 10.21 %, which was higher than that of using Cu3SnS4 nanoparticles (4.22 %) and comparable to the 5.91 % obtained with pure Pt CE as a reference. The nanohybrid structure of catalyst-active Cu3SnS4 nanoparticles established on electrically conducting 2D graphene sheets provides fast ion diffusion pathways, a large accessible surface area, and superb chemical and thermal stability, improving the electrode's performance. This research offers an alternative CE in non-Pt system materials and a better solution in other fields. Moreover, the CSSG5 sample showed high degradation percentage (95 %), rate constant (0.5612 min-1) and long-term stability towards tetracycline (TC) under visible light irradiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信