Qilin Zhu , Yulong Ding , Jie Jiang , Shuang-Hua Yang
{"title":"在工业控制系统中使用不变规则进行异常检测","authors":"Qilin Zhu , Yulong Ding , Jie Jiang , Shuang-Hua Yang","doi":"10.1016/j.conengprac.2024.106164","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial Control Systems (ICS) are intelligent control systems that integrate computing, physical processes, and communication to manage critical infrastructures such as power grids, oil and gas processing facilities, and water treatment plants. In recent years, ICS have been increasingly targeted by malicious attacks, causing severe consequences. Anomaly detection systems utilized in ICS are crucial in safeguarding ICS from potential threats by sending out an alert upon detecting any network attacks. However, existing methods for ICS anomaly detection often suffer from limitations. Supervised machine learning methods encounter the issue of imbalanced positive and negative samples, while residual-based anomaly detection methods face challenges in detecting stealthy attacks. This paper presents an unsupervised anomaly detection method for ICS using association rule mining techniques. Utilizing the proposed variation-driven predicate generation strategy, the method incorporates temporal features of sensor readings into the generated predicates, achieving the mining of invariant rules that take into account the temporal dependencies among physical variables. This approach allows for a more comprehensive exploration of the invariant patterns maintained in the dynamic processes of systems. Through experiments conducted on two public datasets, the method demonstrates high detection efficiency, meeting the real-time demands of online detection. Experimental results showcase its notable efficacy in anomaly detection, with a substantial enhancement in the recall rate. Furthermore, the method’s capability to promptly issue warnings enables it to detect multiple attacks with low latency.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"154 ","pages":"Article 106164"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly detection using invariant rules in Industrial Control Systems\",\"authors\":\"Qilin Zhu , Yulong Ding , Jie Jiang , Shuang-Hua Yang\",\"doi\":\"10.1016/j.conengprac.2024.106164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Industrial Control Systems (ICS) are intelligent control systems that integrate computing, physical processes, and communication to manage critical infrastructures such as power grids, oil and gas processing facilities, and water treatment plants. In recent years, ICS have been increasingly targeted by malicious attacks, causing severe consequences. Anomaly detection systems utilized in ICS are crucial in safeguarding ICS from potential threats by sending out an alert upon detecting any network attacks. However, existing methods for ICS anomaly detection often suffer from limitations. Supervised machine learning methods encounter the issue of imbalanced positive and negative samples, while residual-based anomaly detection methods face challenges in detecting stealthy attacks. This paper presents an unsupervised anomaly detection method for ICS using association rule mining techniques. Utilizing the proposed variation-driven predicate generation strategy, the method incorporates temporal features of sensor readings into the generated predicates, achieving the mining of invariant rules that take into account the temporal dependencies among physical variables. This approach allows for a more comprehensive exploration of the invariant patterns maintained in the dynamic processes of systems. Through experiments conducted on two public datasets, the method demonstrates high detection efficiency, meeting the real-time demands of online detection. Experimental results showcase its notable efficacy in anomaly detection, with a substantial enhancement in the recall rate. Furthermore, the method’s capability to promptly issue warnings enables it to detect multiple attacks with low latency.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"154 \",\"pages\":\"Article 106164\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096706612400323X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096706612400323X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Anomaly detection using invariant rules in Industrial Control Systems
Industrial Control Systems (ICS) are intelligent control systems that integrate computing, physical processes, and communication to manage critical infrastructures such as power grids, oil and gas processing facilities, and water treatment plants. In recent years, ICS have been increasingly targeted by malicious attacks, causing severe consequences. Anomaly detection systems utilized in ICS are crucial in safeguarding ICS from potential threats by sending out an alert upon detecting any network attacks. However, existing methods for ICS anomaly detection often suffer from limitations. Supervised machine learning methods encounter the issue of imbalanced positive and negative samples, while residual-based anomaly detection methods face challenges in detecting stealthy attacks. This paper presents an unsupervised anomaly detection method for ICS using association rule mining techniques. Utilizing the proposed variation-driven predicate generation strategy, the method incorporates temporal features of sensor readings into the generated predicates, achieving the mining of invariant rules that take into account the temporal dependencies among physical variables. This approach allows for a more comprehensive exploration of the invariant patterns maintained in the dynamic processes of systems. Through experiments conducted on two public datasets, the method demonstrates high detection efficiency, meeting the real-time demands of online detection. Experimental results showcase its notable efficacy in anomaly detection, with a substantial enhancement in the recall rate. Furthermore, the method’s capability to promptly issue warnings enables it to detect multiple attacks with low latency.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.