{"title":"预测和控制烧结炉温度的混合自学模型","authors":"Yuanshen Dai , Ning Chen , Zhijiang Shao","doi":"10.1016/j.conengprac.2024.106159","DOIUrl":null,"url":null,"abstract":"<div><div>Ternary cathode materials are important components of lithium-ion batteries. However, the sintering process during manufacturing is challenging to control due to the inaccessibility of key dynamic variables and the frequent fluctuations in operating conditions. These lead to high energy consumption and inconsistent product quality. In this paper, we propose a hybrid self-learning prediction model and control method for sintering furnace temperature based on both first-principle and process data. Firstly, a mechanism model with temperature time delay is established based on energy flow analysis in the furnace. To capture the tail gas temperature dynamic in the mechanism model, a Ventingformer-based prediction data-driven model is proposed. In this model, a memory updating technique and an autoregressive module based on the Transformer framework are developed to identify long-time dependencies and respond to variations in input sequences. Then, a hybrid self-learning modeling framework is designed. Based on the established hybrid model, a multiscale objective function-based nonlinear model predictive control (MSCF-NMPC) method is proposed to achieve precise tracking control of the internal temperature in the furnace. A multiscale objective function with short-term cost in terms of energy consumption and tracking accuracy as well as long-term cost in terms of energy loss is constructing in the control optimization problem. Finally, the proposed hybrid self-learning model and MSCF-NMPC method are verified using the actual process data from a sintering furnace, demonstrating the effectiveness of the proposed method. The results offer practical guidance for industrial applications.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"154 ","pages":"Article 106159"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid self-learning model for the prediction and control of sintering furnace temperature\",\"authors\":\"Yuanshen Dai , Ning Chen , Zhijiang Shao\",\"doi\":\"10.1016/j.conengprac.2024.106159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ternary cathode materials are important components of lithium-ion batteries. However, the sintering process during manufacturing is challenging to control due to the inaccessibility of key dynamic variables and the frequent fluctuations in operating conditions. These lead to high energy consumption and inconsistent product quality. In this paper, we propose a hybrid self-learning prediction model and control method for sintering furnace temperature based on both first-principle and process data. Firstly, a mechanism model with temperature time delay is established based on energy flow analysis in the furnace. To capture the tail gas temperature dynamic in the mechanism model, a Ventingformer-based prediction data-driven model is proposed. In this model, a memory updating technique and an autoregressive module based on the Transformer framework are developed to identify long-time dependencies and respond to variations in input sequences. Then, a hybrid self-learning modeling framework is designed. Based on the established hybrid model, a multiscale objective function-based nonlinear model predictive control (MSCF-NMPC) method is proposed to achieve precise tracking control of the internal temperature in the furnace. A multiscale objective function with short-term cost in terms of energy consumption and tracking accuracy as well as long-term cost in terms of energy loss is constructing in the control optimization problem. Finally, the proposed hybrid self-learning model and MSCF-NMPC method are verified using the actual process data from a sintering furnace, demonstrating the effectiveness of the proposed method. The results offer practical guidance for industrial applications.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"154 \",\"pages\":\"Article 106159\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124003186\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124003186","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Hybrid self-learning model for the prediction and control of sintering furnace temperature
Ternary cathode materials are important components of lithium-ion batteries. However, the sintering process during manufacturing is challenging to control due to the inaccessibility of key dynamic variables and the frequent fluctuations in operating conditions. These lead to high energy consumption and inconsistent product quality. In this paper, we propose a hybrid self-learning prediction model and control method for sintering furnace temperature based on both first-principle and process data. Firstly, a mechanism model with temperature time delay is established based on energy flow analysis in the furnace. To capture the tail gas temperature dynamic in the mechanism model, a Ventingformer-based prediction data-driven model is proposed. In this model, a memory updating technique and an autoregressive module based on the Transformer framework are developed to identify long-time dependencies and respond to variations in input sequences. Then, a hybrid self-learning modeling framework is designed. Based on the established hybrid model, a multiscale objective function-based nonlinear model predictive control (MSCF-NMPC) method is proposed to achieve precise tracking control of the internal temperature in the furnace. A multiscale objective function with short-term cost in terms of energy consumption and tracking accuracy as well as long-term cost in terms of energy loss is constructing in the control optimization problem. Finally, the proposed hybrid self-learning model and MSCF-NMPC method are verified using the actual process data from a sintering furnace, demonstrating the effectiveness of the proposed method. The results offer practical guidance for industrial applications.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.