Francisco Javier Acebedo-Martínez , Paula Alejandra Baldión , Francesca Oltolina , Antonia Follenzi , Giuseppe Falini , Jorge Fernando Fernández-Sánchez , Duane Choquesillo-Lazarte , Jaime Gómez-Morales
{"title":"将生物分子功能化的剥离石墨烯和氧化石墨烯作为纳米晶磷灰石的异质核,制成具有定制机械、发光和生物特性的混合纳米复合材料","authors":"Francisco Javier Acebedo-Martínez , Paula Alejandra Baldión , Francesca Oltolina , Antonia Follenzi , Giuseppe Falini , Jorge Fernando Fernández-Sánchez , Duane Choquesillo-Lazarte , Jaime Gómez-Morales","doi":"10.1016/j.ceramint.2024.10.034","DOIUrl":null,"url":null,"abstract":"<div><div>Nanocrystalline apatite (Ap), known for its exceptional biological properties, faces limitations in hard tissue engineering due to its poor mechanical properties. To overcome this limitation, we investigated the preparation of nanocomposites through heterogeneous nucleation of calcium phosphate on exfoliated graphene (G) and graphene oxide (GO) flakes, selected for their outstanding mechanical properties. The flakes were treated (functionalized) with amino acids of varying isoelectric points—namely L-Arginine (Arg), L-Alanine (Aln) and L-Aspartic acid (Asp)— as well as citrate (Cit) molecules. Furthermore, Tb<sup>3+</sup> was incorporated into the formulations to introduce luminescence and further enrich the functionality of the composite. The synthesis was conducted using the sitting drop vapor diffusion method. Functionalized GO/Ap nanocomposites significantly improved roughness, adhesion forces and elastic modulus compared to Ap and G-based particles. GO-Asp-Ap-Tb nanocomposites exhibited the highest roughness (163.8 ± 116.2 nm), while G-Cit-Ap had the lowest (6.8 ± 5.6 nm). In terms of adhesion force, GO-Cit-Ap-Tb reached the highest value (31.06 ± 13.3 nN), while G-Arg-Ap had the lowest (3.7 ± 1.8 nN) compared to Ap (13.6 ± 3.2 nN). For the elastic modulus, GO-Aln-Ap-Tb demonstrated the greatest stiffness (3489 ± 101.01 MPa) compared to Ap (30.2 ± 6.5 MPa), while G-Aln-Ap-Tb showed the lowest (17.2 ± 8.4 MPa). Concerning their luminescence, regardless of G/Ap and GO/Ap, the relative luminescence intensities depended on the biomolecule used and decreased in the order Arg > Aln > Asp and Cit. Furthermore, G/Ap and GO/Ap nanocomposites demonstrated good biocompatibility on murine mesenchymal stem cells at low concentrations, showing cell viabilities exceeding 80 % at 0.1 μg/mL. This research offers a novel approach to enhancing the mechanical properties of apatites while preserving their good biocompatibility properties and introducing new functionalities (i.e. luminescence) in the composites, thereby expanding their range of applications in hard tissue engineering.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 51192-51206"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomolecule-functionalized exfoliated-graphene and graphene oxide as heteronucleants of nanocrystalline apatites to make hybrid nanocomposites with tailored mechanical, luminescent, and biological properties\",\"authors\":\"Francisco Javier Acebedo-Martínez , Paula Alejandra Baldión , Francesca Oltolina , Antonia Follenzi , Giuseppe Falini , Jorge Fernando Fernández-Sánchez , Duane Choquesillo-Lazarte , Jaime Gómez-Morales\",\"doi\":\"10.1016/j.ceramint.2024.10.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanocrystalline apatite (Ap), known for its exceptional biological properties, faces limitations in hard tissue engineering due to its poor mechanical properties. To overcome this limitation, we investigated the preparation of nanocomposites through heterogeneous nucleation of calcium phosphate on exfoliated graphene (G) and graphene oxide (GO) flakes, selected for their outstanding mechanical properties. The flakes were treated (functionalized) with amino acids of varying isoelectric points—namely L-Arginine (Arg), L-Alanine (Aln) and L-Aspartic acid (Asp)— as well as citrate (Cit) molecules. Furthermore, Tb<sup>3+</sup> was incorporated into the formulations to introduce luminescence and further enrich the functionality of the composite. The synthesis was conducted using the sitting drop vapor diffusion method. Functionalized GO/Ap nanocomposites significantly improved roughness, adhesion forces and elastic modulus compared to Ap and G-based particles. GO-Asp-Ap-Tb nanocomposites exhibited the highest roughness (163.8 ± 116.2 nm), while G-Cit-Ap had the lowest (6.8 ± 5.6 nm). In terms of adhesion force, GO-Cit-Ap-Tb reached the highest value (31.06 ± 13.3 nN), while G-Arg-Ap had the lowest (3.7 ± 1.8 nN) compared to Ap (13.6 ± 3.2 nN). For the elastic modulus, GO-Aln-Ap-Tb demonstrated the greatest stiffness (3489 ± 101.01 MPa) compared to Ap (30.2 ± 6.5 MPa), while G-Aln-Ap-Tb showed the lowest (17.2 ± 8.4 MPa). Concerning their luminescence, regardless of G/Ap and GO/Ap, the relative luminescence intensities depended on the biomolecule used and decreased in the order Arg > Aln > Asp and Cit. Furthermore, G/Ap and GO/Ap nanocomposites demonstrated good biocompatibility on murine mesenchymal stem cells at low concentrations, showing cell viabilities exceeding 80 % at 0.1 μg/mL. This research offers a novel approach to enhancing the mechanical properties of apatites while preserving their good biocompatibility properties and introducing new functionalities (i.e. luminescence) in the composites, thereby expanding their range of applications in hard tissue engineering.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 23\",\"pages\":\"Pages 51192-51206\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224045462\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224045462","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Biomolecule-functionalized exfoliated-graphene and graphene oxide as heteronucleants of nanocrystalline apatites to make hybrid nanocomposites with tailored mechanical, luminescent, and biological properties
Nanocrystalline apatite (Ap), known for its exceptional biological properties, faces limitations in hard tissue engineering due to its poor mechanical properties. To overcome this limitation, we investigated the preparation of nanocomposites through heterogeneous nucleation of calcium phosphate on exfoliated graphene (G) and graphene oxide (GO) flakes, selected for their outstanding mechanical properties. The flakes were treated (functionalized) with amino acids of varying isoelectric points—namely L-Arginine (Arg), L-Alanine (Aln) and L-Aspartic acid (Asp)— as well as citrate (Cit) molecules. Furthermore, Tb3+ was incorporated into the formulations to introduce luminescence and further enrich the functionality of the composite. The synthesis was conducted using the sitting drop vapor diffusion method. Functionalized GO/Ap nanocomposites significantly improved roughness, adhesion forces and elastic modulus compared to Ap and G-based particles. GO-Asp-Ap-Tb nanocomposites exhibited the highest roughness (163.8 ± 116.2 nm), while G-Cit-Ap had the lowest (6.8 ± 5.6 nm). In terms of adhesion force, GO-Cit-Ap-Tb reached the highest value (31.06 ± 13.3 nN), while G-Arg-Ap had the lowest (3.7 ± 1.8 nN) compared to Ap (13.6 ± 3.2 nN). For the elastic modulus, GO-Aln-Ap-Tb demonstrated the greatest stiffness (3489 ± 101.01 MPa) compared to Ap (30.2 ± 6.5 MPa), while G-Aln-Ap-Tb showed the lowest (17.2 ± 8.4 MPa). Concerning their luminescence, regardless of G/Ap and GO/Ap, the relative luminescence intensities depended on the biomolecule used and decreased in the order Arg > Aln > Asp and Cit. Furthermore, G/Ap and GO/Ap nanocomposites demonstrated good biocompatibility on murine mesenchymal stem cells at low concentrations, showing cell viabilities exceeding 80 % at 0.1 μg/mL. This research offers a novel approach to enhancing the mechanical properties of apatites while preserving their good biocompatibility properties and introducing new functionalities (i.e. luminescence) in the composites, thereby expanding their range of applications in hard tissue engineering.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.