负热膨胀陶瓷 ZrMgMo3O12 增强 2024Al 复合材料的硬度和压缩性能

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Junrui Yang , Chaofan Yin , Binbin Dong , Jianjun Chen , Wei Luo , Ming Liu , Jiahui Tang , Xinhe Yang , Guopeng Zhang , Zhongxia Liu
{"title":"负热膨胀陶瓷 ZrMgMo3O12 增强 2024Al 复合材料的硬度和压缩性能","authors":"Junrui Yang ,&nbsp;Chaofan Yin ,&nbsp;Binbin Dong ,&nbsp;Jianjun Chen ,&nbsp;Wei Luo ,&nbsp;Ming Liu ,&nbsp;Jiahui Tang ,&nbsp;Xinhe Yang ,&nbsp;Guopeng Zhang ,&nbsp;Zhongxia Liu","doi":"10.1016/j.ceramint.2024.09.395","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigated the Vickers hardness and compressive properties of 0–30 % ZrMgMo<sub>3</sub>O<sub>12p</sub>/2024Al composites with controlled thermal expansion. The composites exhibited superior Vickers hardness and compressive properties, highly dependent on the ZrMgMo<sub>3</sub>O<sub>12</sub> content. Under identical preparation conditions, an increase in ZrMgMo<sub>3</sub>O<sub>12</sub> content allows for adjusting the Vickers hardness from 163 to 280 HV and the compressive yield strength from 330 to 702 MPa. Additionally, the 5 % and 10 % ZrMgMo<sub>3</sub>O<sub>12</sub> composites exhibited 23 % and 8 % compressive strains, respectively. The Orowan strengthening effect of the ZrMgMo<sub>3</sub>O<sub>12</sub> particles and the thermal mismatch stress at the particle-matrix interface were identified as the key strengthening mechanisms for the composites. However, excessive stress can lead to interfacial debonding and composite failure. Agglomeration of the ZrMgMo<sub>3</sub>O<sub>12</sub> particles was observed beyond 10 % content. At 30 %, the thermal mismatch stress exceeded the binding strength, causing interfacial debonding and composite failure. The controlled mechanical properties of the 0–30 % ZrMgMo<sub>3</sub>O<sub>12p</sub>/2024Al composites indicate a promising potential for application in the aerospace and automotive industries and electronics and optical instruments sectors.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 50496-50503"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardness and compressive properties of negative thermal expansion ceramic ZrMgMo3O12 reinforced 2024Al composites\",\"authors\":\"Junrui Yang ,&nbsp;Chaofan Yin ,&nbsp;Binbin Dong ,&nbsp;Jianjun Chen ,&nbsp;Wei Luo ,&nbsp;Ming Liu ,&nbsp;Jiahui Tang ,&nbsp;Xinhe Yang ,&nbsp;Guopeng Zhang ,&nbsp;Zhongxia Liu\",\"doi\":\"10.1016/j.ceramint.2024.09.395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigated the Vickers hardness and compressive properties of 0–30 % ZrMgMo<sub>3</sub>O<sub>12p</sub>/2024Al composites with controlled thermal expansion. The composites exhibited superior Vickers hardness and compressive properties, highly dependent on the ZrMgMo<sub>3</sub>O<sub>12</sub> content. Under identical preparation conditions, an increase in ZrMgMo<sub>3</sub>O<sub>12</sub> content allows for adjusting the Vickers hardness from 163 to 280 HV and the compressive yield strength from 330 to 702 MPa. Additionally, the 5 % and 10 % ZrMgMo<sub>3</sub>O<sub>12</sub> composites exhibited 23 % and 8 % compressive strains, respectively. The Orowan strengthening effect of the ZrMgMo<sub>3</sub>O<sub>12</sub> particles and the thermal mismatch stress at the particle-matrix interface were identified as the key strengthening mechanisms for the composites. However, excessive stress can lead to interfacial debonding and composite failure. Agglomeration of the ZrMgMo<sub>3</sub>O<sub>12</sub> particles was observed beyond 10 % content. At 30 %, the thermal mismatch stress exceeded the binding strength, causing interfacial debonding and composite failure. The controlled mechanical properties of the 0–30 % ZrMgMo<sub>3</sub>O<sub>12p</sub>/2024Al composites indicate a promising potential for application in the aerospace and automotive industries and electronics and optical instruments sectors.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 23\",\"pages\":\"Pages 50496-50503\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224044304\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224044304","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究了热膨胀受控的 0-30 % ZrMgMo3O12p/2024Al 复合材料的维氏硬度和压缩性能。复合材料表现出优异的维氏硬度和抗压性能,这与 ZrMgMo3O12 的含量有很大关系。在相同的制备条件下,增加 ZrMgMo3O12 的含量可将维氏硬度从 163 HV 调整到 280 HV,将抗压屈服强度从 330 MPa 调整到 702 MPa。此外,5% 和 10% 的 ZrMgMo3O12 复合材料分别表现出 23% 和 8% 的压缩应变。ZrMgMo3O12 颗粒的奥罗旺强化效应和颗粒-基体界面的热错配应力被认为是复合材料的主要强化机制。然而,过大的应力会导致界面脱粘和复合材料失效。当 ZrMgMo3O12 颗粒的含量超过 10% 时,就会出现团聚现象。30% 时,热错配应力超过了结合强度,导致界面脱粘和复合材料失效。0-30 % ZrMgMo3O12p/2024Al 复合材料的可控机械性能表明,其在航空航天、汽车工业、电子和光学仪器领域的应用潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardness and compressive properties of negative thermal expansion ceramic ZrMgMo3O12 reinforced 2024Al composites
This work investigated the Vickers hardness and compressive properties of 0–30 % ZrMgMo3O12p/2024Al composites with controlled thermal expansion. The composites exhibited superior Vickers hardness and compressive properties, highly dependent on the ZrMgMo3O12 content. Under identical preparation conditions, an increase in ZrMgMo3O12 content allows for adjusting the Vickers hardness from 163 to 280 HV and the compressive yield strength from 330 to 702 MPa. Additionally, the 5 % and 10 % ZrMgMo3O12 composites exhibited 23 % and 8 % compressive strains, respectively. The Orowan strengthening effect of the ZrMgMo3O12 particles and the thermal mismatch stress at the particle-matrix interface were identified as the key strengthening mechanisms for the composites. However, excessive stress can lead to interfacial debonding and composite failure. Agglomeration of the ZrMgMo3O12 particles was observed beyond 10 % content. At 30 %, the thermal mismatch stress exceeded the binding strength, causing interfacial debonding and composite failure. The controlled mechanical properties of the 0–30 % ZrMgMo3O12p/2024Al composites indicate a promising potential for application in the aerospace and automotive industries and electronics and optical instruments sectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信