Yang Li , Kaixin Zhang , Tianxi Yang , Junyang Nie , Qiwei Li , Yijian Zhou , Tao Tao , Ting Zhi , Qun Yan , Jie Sun
{"title":"研究具有大纵横比的超小型侧壁绝缘氮化镓通孔,以实现垂直堆叠全彩 Micro-LED 战略","authors":"Yang Li , Kaixin Zhang , Tianxi Yang , Junyang Nie , Qiwei Li , Yijian Zhou , Tao Tao , Ting Zhi , Qun Yan , Jie Sun","doi":"10.1016/j.optcom.2024.131332","DOIUrl":null,"url":null,"abstract":"<div><div>Micro light-emitting diode (Micro-LED) is considered as an ideal candidate for near-eye, outdoor display, and light field photography applications. At present, the commercialization of full-color Micro-LED is limited by the mass transfer of red, green, and blue (R-B-G) sub-pixels. Hence, we proposed a full-color scheme of vertically stacked tricolor Micro-LED layers to avoid mass transfer, which owns over 1000 PPI (pixel per inch). In this solution, the sidewall-insulated via in the epilayer plays a critical role to achieve the electrical and mechanical integration of three monochromatic Micro-LEDs with Si-based complementary metal-oxide semiconductor (CMOS) driver. Therefore, the via processes of GaN-based epilayer were investigated systematically using available semiconductor processes in this article. The inductively coupled plasma (ICP) etching was employed to create the ultra-small micro-structure array using SiO<sub>2</sub> thin film as hard mask. Sidewall-insulated vias were fabricated with different aperture sizes (9.3, 7.5, and 3.4 μm) and a depth of about 4-μm. The vias with large aspect ratio are completely satisfy the requirement of designed vertical interconnection. This study aims to provide valuable reference for the commercial progress of high-resolution and full-color Micro-LEDs.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131332"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of ultrasmall sidewall-insulated GaN via with large aspect ratio for the strategy of vertically stacked full-color Micro-LEDs\",\"authors\":\"Yang Li , Kaixin Zhang , Tianxi Yang , Junyang Nie , Qiwei Li , Yijian Zhou , Tao Tao , Ting Zhi , Qun Yan , Jie Sun\",\"doi\":\"10.1016/j.optcom.2024.131332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Micro light-emitting diode (Micro-LED) is considered as an ideal candidate for near-eye, outdoor display, and light field photography applications. At present, the commercialization of full-color Micro-LED is limited by the mass transfer of red, green, and blue (R-B-G) sub-pixels. Hence, we proposed a full-color scheme of vertically stacked tricolor Micro-LED layers to avoid mass transfer, which owns over 1000 PPI (pixel per inch). In this solution, the sidewall-insulated via in the epilayer plays a critical role to achieve the electrical and mechanical integration of three monochromatic Micro-LEDs with Si-based complementary metal-oxide semiconductor (CMOS) driver. Therefore, the via processes of GaN-based epilayer were investigated systematically using available semiconductor processes in this article. The inductively coupled plasma (ICP) etching was employed to create the ultra-small micro-structure array using SiO<sub>2</sub> thin film as hard mask. Sidewall-insulated vias were fabricated with different aperture sizes (9.3, 7.5, and 3.4 μm) and a depth of about 4-μm. The vias with large aspect ratio are completely satisfy the requirement of designed vertical interconnection. This study aims to provide valuable reference for the commercial progress of high-resolution and full-color Micro-LEDs.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"575 \",\"pages\":\"Article 131332\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401824010691\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824010691","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Investigation of ultrasmall sidewall-insulated GaN via with large aspect ratio for the strategy of vertically stacked full-color Micro-LEDs
Micro light-emitting diode (Micro-LED) is considered as an ideal candidate for near-eye, outdoor display, and light field photography applications. At present, the commercialization of full-color Micro-LED is limited by the mass transfer of red, green, and blue (R-B-G) sub-pixels. Hence, we proposed a full-color scheme of vertically stacked tricolor Micro-LED layers to avoid mass transfer, which owns over 1000 PPI (pixel per inch). In this solution, the sidewall-insulated via in the epilayer plays a critical role to achieve the electrical and mechanical integration of three monochromatic Micro-LEDs with Si-based complementary metal-oxide semiconductor (CMOS) driver. Therefore, the via processes of GaN-based epilayer were investigated systematically using available semiconductor processes in this article. The inductively coupled plasma (ICP) etching was employed to create the ultra-small micro-structure array using SiO2 thin film as hard mask. Sidewall-insulated vias were fabricated with different aperture sizes (9.3, 7.5, and 3.4 μm) and a depth of about 4-μm. The vias with large aspect ratio are completely satisfy the requirement of designed vertical interconnection. This study aims to provide valuable reference for the commercial progress of high-resolution and full-color Micro-LEDs.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.