Zhaoping Shi , Ziang Wang , Hongxiang Wu , Meiling Xiao , Changpeng Liu , Wei Xing
{"title":"快速配体转化产生的高密度 Ir 单点,用于高效水电解","authors":"Zhaoping Shi , Ziang Wang , Hongxiang Wu , Meiling Xiao , Changpeng Liu , Wei Xing","doi":"10.1016/S1872-2067(24)60128-2","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance oxygen evolution reaction catalysts with low iridium content is the key to the scale-up of proton exchange membrane water electrolyzer (PEMWE) for green hydrogen production. Single-site electrocatalysts with maximized atomic efficiency are held as promising candidates but still suffer from inadequate activity and stability in practical electrolyzer due to the low site density. Here, we proposed a NaNO<sub>3</sub>-assistant thermal decomposition strategy for the preparation of high-density Ir single sites on MnO<sub>2</sub> substrate (NaNO<sub>3</sub>-H-Ir-MnO<sub>2</sub>). Direct spectroscopic evidence suggests the inclusion of NaNO<sub>3</sub> accelerates the transformation of Ir-Cl to Ir-O coordination, thus generating uniform dispersed high-density Ir single sites in the products. The optimized H-Ir-MnO<sub>2</sub> demonstrates not only high intrinsic activity in a three-electrode set-up but also boosted performance in scalable PEMWE, requiring a cell voltage of only 1.74 V to attain a high current density of 2 A cm<sup>‒2</sup> at a low Ir loading of 0.18 mg<sub>Ir</sub> cm<sup>‒2</sup>. This work offers a new insight for enhancing the industrial practicality of Ir-based single site catalysts.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 223-232"},"PeriodicalIF":15.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-density Ir single sites from rapid ligand transformation for efficient water electrolysis\",\"authors\":\"Zhaoping Shi , Ziang Wang , Hongxiang Wu , Meiling Xiao , Changpeng Liu , Wei Xing\",\"doi\":\"10.1016/S1872-2067(24)60128-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of high-performance oxygen evolution reaction catalysts with low iridium content is the key to the scale-up of proton exchange membrane water electrolyzer (PEMWE) for green hydrogen production. Single-site electrocatalysts with maximized atomic efficiency are held as promising candidates but still suffer from inadequate activity and stability in practical electrolyzer due to the low site density. Here, we proposed a NaNO<sub>3</sub>-assistant thermal decomposition strategy for the preparation of high-density Ir single sites on MnO<sub>2</sub> substrate (NaNO<sub>3</sub>-H-Ir-MnO<sub>2</sub>). Direct spectroscopic evidence suggests the inclusion of NaNO<sub>3</sub> accelerates the transformation of Ir-Cl to Ir-O coordination, thus generating uniform dispersed high-density Ir single sites in the products. The optimized H-Ir-MnO<sub>2</sub> demonstrates not only high intrinsic activity in a three-electrode set-up but also boosted performance in scalable PEMWE, requiring a cell voltage of only 1.74 V to attain a high current density of 2 A cm<sup>‒2</sup> at a low Ir loading of 0.18 mg<sub>Ir</sub> cm<sup>‒2</sup>. This work offers a new insight for enhancing the industrial practicality of Ir-based single site catalysts.</div></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"66 \",\"pages\":\"Pages 223-232\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724601282\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601282","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
开发铱含量低的高性能氧进化反应催化剂是扩大质子交换膜水电解槽(PEMWE)规模以实现绿色制氢的关键。原子效率最大化的单位点电催化剂被认为是有前途的候选催化剂,但由于位点密度低,在实际电解槽中仍存在活性和稳定性不足的问题。在此,我们提出了一种在 MnO2 基质上制备高密度 Ir 单位点(NaNO3-H-Ir-MnO2)的 NaNO3 辅助热分解策略。直接光谱证据表明,NaNO3 的加入加速了 Ir-Cl 配位向 Ir-O 配位的转变,从而在产物中生成了均匀分散的高密度 Ir 单位点。优化后的 H-Ir-MnO2 不仅在三电极设置中表现出很高的本征活性,而且在可扩展的 PEMWE 中的性能也得到了提升,在 0.18 mgIr cm-2 的低 Ir 负载条件下,只需 1.74 V 的电池电压就能达到 2 A cm-2 的高电流密度。这项工作为提高铱基单位点催化剂的工业实用性提供了新的视角。
High-density Ir single sites from rapid ligand transformation for efficient water electrolysis
The development of high-performance oxygen evolution reaction catalysts with low iridium content is the key to the scale-up of proton exchange membrane water electrolyzer (PEMWE) for green hydrogen production. Single-site electrocatalysts with maximized atomic efficiency are held as promising candidates but still suffer from inadequate activity and stability in practical electrolyzer due to the low site density. Here, we proposed a NaNO3-assistant thermal decomposition strategy for the preparation of high-density Ir single sites on MnO2 substrate (NaNO3-H-Ir-MnO2). Direct spectroscopic evidence suggests the inclusion of NaNO3 accelerates the transformation of Ir-Cl to Ir-O coordination, thus generating uniform dispersed high-density Ir single sites in the products. The optimized H-Ir-MnO2 demonstrates not only high intrinsic activity in a three-electrode set-up but also boosted performance in scalable PEMWE, requiring a cell voltage of only 1.74 V to attain a high current density of 2 A cm‒2 at a low Ir loading of 0.18 mgIr cm‒2. This work offers a new insight for enhancing the industrial practicality of Ir-based single site catalysts.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.