利用冠层结构动力学约束和时序配准改进多时相 Sentinel-1 图像的水稻叶面积指数检索

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Yu Liu , Bo Wang , Junfeng Tao , Sijing Tian , Qinghong Sheng , Jun Li , Shuwei Wang , Xiaoli Liu , Honglin He
{"title":"利用冠层结构动力学约束和时序配准改进多时相 Sentinel-1 图像的水稻叶面积指数检索","authors":"Yu Liu ,&nbsp;Bo Wang ,&nbsp;Junfeng Tao ,&nbsp;Sijing Tian ,&nbsp;Qinghong Sheng ,&nbsp;Jun Li ,&nbsp;Shuwei Wang ,&nbsp;Xiaoli Liu ,&nbsp;Honglin He","doi":"10.1016/j.compag.2024.109658","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the limited availability of in-situ observation data, most existing leaf area index (LAI) inversion models do not fully leverage temporal information. Furthermore, the phenological evolution of crops can result in unstable and inaccurate retrieval outcomes. To address these challenges, this study proposes a novel framework for LAI inversion based on Sentinel-1. First, the constrained canopy structure dynamic hierarchical linear model (CSDHLM) is constructed, which integrates canopy dynamics information and temporal constraints. Second, the microwave scattering characteristics at various crop growth stages used to develop the phenological segment dynamic time warping (PSDTW). The PSDTW aims to address the challenges posed by inconsistent phenological dynamics across different plots. The quantitative evaluation results indicate that CSDHLM more accurately captures the temporal changes of LAI (R<sup>2</sup> = 0.7688, RMSE = 0.8742) compared to hierarchical linear model (R<sup>2</sup> = 0.7234, RMSE = 0.9561) and gaussian process regression (R<sup>2</sup> = 0.7143, RMSE = 0.9717). Additionally, the LAI inversion results obtained by combining CSDHLM and PSDTW have greater robustness (R<sup>2</sup> = 0.7332, RMSE = 1.4032) across diverse agricultural scenarios. This study emphasizes the importance of phenological information in estimating rice LAI, and the proposed framework is capable of generating long-term rice LAI maps with high resolution, demonstrating significant potential for agricultural applications at the regional scale.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109658"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canopy structure dynamics constraints and time sequence alignment for improving retrieval of rice leaf area index from multi-temporal Sentinel-1 imagery\",\"authors\":\"Yu Liu ,&nbsp;Bo Wang ,&nbsp;Junfeng Tao ,&nbsp;Sijing Tian ,&nbsp;Qinghong Sheng ,&nbsp;Jun Li ,&nbsp;Shuwei Wang ,&nbsp;Xiaoli Liu ,&nbsp;Honglin He\",\"doi\":\"10.1016/j.compag.2024.109658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the limited availability of in-situ observation data, most existing leaf area index (LAI) inversion models do not fully leverage temporal information. Furthermore, the phenological evolution of crops can result in unstable and inaccurate retrieval outcomes. To address these challenges, this study proposes a novel framework for LAI inversion based on Sentinel-1. First, the constrained canopy structure dynamic hierarchical linear model (CSDHLM) is constructed, which integrates canopy dynamics information and temporal constraints. Second, the microwave scattering characteristics at various crop growth stages used to develop the phenological segment dynamic time warping (PSDTW). The PSDTW aims to address the challenges posed by inconsistent phenological dynamics across different plots. The quantitative evaluation results indicate that CSDHLM more accurately captures the temporal changes of LAI (R<sup>2</sup> = 0.7688, RMSE = 0.8742) compared to hierarchical linear model (R<sup>2</sup> = 0.7234, RMSE = 0.9561) and gaussian process regression (R<sup>2</sup> = 0.7143, RMSE = 0.9717). Additionally, the LAI inversion results obtained by combining CSDHLM and PSDTW have greater robustness (R<sup>2</sup> = 0.7332, RMSE = 1.4032) across diverse agricultural scenarios. This study emphasizes the importance of phenological information in estimating rice LAI, and the proposed framework is capable of generating long-term rice LAI maps with high resolution, demonstrating significant potential for agricultural applications at the regional scale.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"227 \",\"pages\":\"Article 109658\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169924010494\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010494","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于现场观测数据有限,现有的叶面积指数(LAI)反演模型大多不能充分利用时间信息。此外,作物的物候演变也会导致检索结果不稳定、不准确。为了应对这些挑战,本研究提出了一种基于 Sentinel-1 的新型 LAI 反演框架。首先,构建了约束冠层结构动态分层线性模型(CSDHLM),该模型整合了冠层动态信息和时间约束。其次,利用作物不同生长阶段的微波散射特征,建立物候区段动态时间扭曲(PSDTW)。PSDTW 旨在解决不同地块物候动态不一致带来的挑战。定量评估结果表明,与分层线性模型(R2 = 0.7234,RMSE = 0.9561)和高斯过程回归(R2 = 0.7143,RMSE = 0.9717)相比,CSDHLM 能更准确地捕捉 LAI 的时间变化(R2 = 0.7688,RMSE = 0.8742)。此外,结合 CSDHLM 和 PSDTW 得出的 LAI 反演结果在不同农业情景下具有更强的鲁棒性(R2 = 0.7332,RMSE = 1.4032)。本研究强调了物候信息在估算水稻LAI中的重要性,所提出的框架能够生成高分辨率的长期水稻LAI图,在区域尺度的农业应用中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canopy structure dynamics constraints and time sequence alignment for improving retrieval of rice leaf area index from multi-temporal Sentinel-1 imagery
Due to the limited availability of in-situ observation data, most existing leaf area index (LAI) inversion models do not fully leverage temporal information. Furthermore, the phenological evolution of crops can result in unstable and inaccurate retrieval outcomes. To address these challenges, this study proposes a novel framework for LAI inversion based on Sentinel-1. First, the constrained canopy structure dynamic hierarchical linear model (CSDHLM) is constructed, which integrates canopy dynamics information and temporal constraints. Second, the microwave scattering characteristics at various crop growth stages used to develop the phenological segment dynamic time warping (PSDTW). The PSDTW aims to address the challenges posed by inconsistent phenological dynamics across different plots. The quantitative evaluation results indicate that CSDHLM more accurately captures the temporal changes of LAI (R2 = 0.7688, RMSE = 0.8742) compared to hierarchical linear model (R2 = 0.7234, RMSE = 0.9561) and gaussian process regression (R2 = 0.7143, RMSE = 0.9717). Additionally, the LAI inversion results obtained by combining CSDHLM and PSDTW have greater robustness (R2 = 0.7332, RMSE = 1.4032) across diverse agricultural scenarios. This study emphasizes the importance of phenological information in estimating rice LAI, and the proposed framework is capable of generating long-term rice LAI maps with high resolution, demonstrating significant potential for agricultural applications at the regional scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信