{"title":"通过高压泡沫塑料注射成型工艺制作与连续碳纤维增强聚丙烯预浸料粘合的聚丙烯/碳纤维/炭黑复合泡沫塑料","authors":"Dongxu Tian, Junji Hou, Jinkai Liang, Jingbo Chen","doi":"10.1016/j.compositesb.2024.112006","DOIUrl":null,"url":null,"abstract":"<div><div>The fabrication of polymer composite foams with several functions offers various advantages. Herein, we reported a highly efficient and mass-produced method for preparing polypropylene/carbon fiber/carbon black (PP/CF/CB) composite foams bonded with continuous CF reinforced PP prepregs. CFs were uniformly dispersed in PP via melt blending, but some agglomerations of CBs were observed owing to their little size. Compared with pure PP, the introduction of CB improved the thermal stability and flame retardance of composites. Owing to the homogeneity of polymer between composites and prepregs, they were well bonded by injection molding. The tensile strength of the samples bonded with prepregs was improved by 158.3–257.7 % for different filler contents. As CF and CB played the role of heterogeneous nucleation, and the high-pressure foam injection molding could easily tailor cellular structure by adjusting the holding time and mold temperature, composite foams bonded with two prepregs and with desired cells were successfully prepared. The injected foams with two prepregs had an enhanced electromagnetic interference shielding performance, which was 65.4 dB when the content was 10 wt% and 15 wt% for CF and CB, respectively. This work provides a universal approach for efficient and large-scale preparation of lightweight and multifunctional polymer composite foams.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"291 ","pages":"Article 112006"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of polypropylene/carbon fiber/carbon black composite foam bonded with continuous carbon fiber reinforced polypropylene prepregs via high-pressure foam injection molding\",\"authors\":\"Dongxu Tian, Junji Hou, Jinkai Liang, Jingbo Chen\",\"doi\":\"10.1016/j.compositesb.2024.112006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fabrication of polymer composite foams with several functions offers various advantages. Herein, we reported a highly efficient and mass-produced method for preparing polypropylene/carbon fiber/carbon black (PP/CF/CB) composite foams bonded with continuous CF reinforced PP prepregs. CFs were uniformly dispersed in PP via melt blending, but some agglomerations of CBs were observed owing to their little size. Compared with pure PP, the introduction of CB improved the thermal stability and flame retardance of composites. Owing to the homogeneity of polymer between composites and prepregs, they were well bonded by injection molding. The tensile strength of the samples bonded with prepregs was improved by 158.3–257.7 % for different filler contents. As CF and CB played the role of heterogeneous nucleation, and the high-pressure foam injection molding could easily tailor cellular structure by adjusting the holding time and mold temperature, composite foams bonded with two prepregs and with desired cells were successfully prepared. The injected foams with two prepregs had an enhanced electromagnetic interference shielding performance, which was 65.4 dB when the content was 10 wt% and 15 wt% for CF and CB, respectively. This work provides a universal approach for efficient and large-scale preparation of lightweight and multifunctional polymer composite foams.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"291 \",\"pages\":\"Article 112006\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824008199\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824008199","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication of polypropylene/carbon fiber/carbon black composite foam bonded with continuous carbon fiber reinforced polypropylene prepregs via high-pressure foam injection molding
The fabrication of polymer composite foams with several functions offers various advantages. Herein, we reported a highly efficient and mass-produced method for preparing polypropylene/carbon fiber/carbon black (PP/CF/CB) composite foams bonded with continuous CF reinforced PP prepregs. CFs were uniformly dispersed in PP via melt blending, but some agglomerations of CBs were observed owing to their little size. Compared with pure PP, the introduction of CB improved the thermal stability and flame retardance of composites. Owing to the homogeneity of polymer between composites and prepregs, they were well bonded by injection molding. The tensile strength of the samples bonded with prepregs was improved by 158.3–257.7 % for different filler contents. As CF and CB played the role of heterogeneous nucleation, and the high-pressure foam injection molding could easily tailor cellular structure by adjusting the holding time and mold temperature, composite foams bonded with two prepregs and with desired cells were successfully prepared. The injected foams with two prepregs had an enhanced electromagnetic interference shielding performance, which was 65.4 dB when the content was 10 wt% and 15 wt% for CF and CB, respectively. This work provides a universal approach for efficient and large-scale preparation of lightweight and multifunctional polymer composite foams.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.