薄片的分裂行为

Jicheng Zhuo , Yang Chen , Zan Zhang , Shenglong Wang, Peng Sang, Yuede Cao, Zhixiang Qi, Henggao Xiang, Daixiu Wei, Gong Zheng, Yongsheng Li, Guang Chen
{"title":"薄片的分裂行为","authors":"Jicheng Zhuo ,&nbsp;Yang Chen ,&nbsp;Zan Zhang ,&nbsp;Shenglong Wang,&nbsp;Peng Sang,&nbsp;Yuede Cao,&nbsp;Zhixiang Qi,&nbsp;Henggao Xiang,&nbsp;Daixiu Wei,&nbsp;Gong Zheng,&nbsp;Yongsheng Li,&nbsp;Guang Chen","doi":"10.1016/j.nxmate.2024.100427","DOIUrl":null,"url":null,"abstract":"<div><div>Lamella is a unique microstructure in matters that possesses special properties. The formation and evolution of lamellar microstructures are crucial for achieving super abilities, while the mechanisms of lamellar formation and evolution at the nanoscale are unclear. Driving by the interesting while uncovered micromechanism in lamellar microstructure evolution, we performed the phase-field simulation and experiment to investigate the multiple splitting behaviors of lamellar Ti-Al alloys. The splitting mode of lamella is discovered, inner splitting (IS) and outside splitting (OS). The originations of splitting are found to come from the high interfacial energy of step-like interface between γ variants for the IS, and the stress concentration at α<sub>2</sub>/γ interface drives step-like interface for the OS. The lamellar splitting is complied with the energy change in matter, decreasing in total free energy and elastic energy, while increasing in interfacial energy. These findings provide the new mechanisms of internal lamellar interface breaking driven by the interfacial energy. Therefrom, the expected matter features will be achieved by the strategy of microstructure modulation and optimization.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"7 ","pages":"Article 100427"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splitting behavior of lamella\",\"authors\":\"Jicheng Zhuo ,&nbsp;Yang Chen ,&nbsp;Zan Zhang ,&nbsp;Shenglong Wang,&nbsp;Peng Sang,&nbsp;Yuede Cao,&nbsp;Zhixiang Qi,&nbsp;Henggao Xiang,&nbsp;Daixiu Wei,&nbsp;Gong Zheng,&nbsp;Yongsheng Li,&nbsp;Guang Chen\",\"doi\":\"10.1016/j.nxmate.2024.100427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lamella is a unique microstructure in matters that possesses special properties. The formation and evolution of lamellar microstructures are crucial for achieving super abilities, while the mechanisms of lamellar formation and evolution at the nanoscale are unclear. Driving by the interesting while uncovered micromechanism in lamellar microstructure evolution, we performed the phase-field simulation and experiment to investigate the multiple splitting behaviors of lamellar Ti-Al alloys. The splitting mode of lamella is discovered, inner splitting (IS) and outside splitting (OS). The originations of splitting are found to come from the high interfacial energy of step-like interface between γ variants for the IS, and the stress concentration at α<sub>2</sub>/γ interface drives step-like interface for the OS. The lamellar splitting is complied with the energy change in matter, decreasing in total free energy and elastic energy, while increasing in interfacial energy. These findings provide the new mechanisms of internal lamellar interface breaking driven by the interfacial energy. Therefrom, the expected matter features will be achieved by the strategy of microstructure modulation and optimization.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"7 \",\"pages\":\"Article 100427\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822824003253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824003253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

层状结构是物质中一种独特的微观结构,具有特殊的性质。层状微结构的形成和演化是实现超能力的关键,而层状微结构在纳米尺度上的形成和演化机制尚不清楚。在层状微结构演化的微观机制尚未揭示的有趣现象的驱动下,我们进行了相场模拟和实验,研究了层状钛铝合金的多重分裂行为。我们发现了薄片的分裂模式,即内部分裂(IS)和外部分裂(OS)。在内层分裂中,γ 变体之间阶梯状界面的高界面能是分裂的起源;在外层分裂中,α2/γ 界面的应力集中驱动了阶梯状界面。层状分裂与物质的能量变化一致,总自由能和弹性能降低,而界面能增加。这些发现提供了由界面能驱动的内部薄片界面断裂的新机制。因此,通过微观结构调制和优化策略,可以实现预期的物质特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splitting behavior of lamella
Lamella is a unique microstructure in matters that possesses special properties. The formation and evolution of lamellar microstructures are crucial for achieving super abilities, while the mechanisms of lamellar formation and evolution at the nanoscale are unclear. Driving by the interesting while uncovered micromechanism in lamellar microstructure evolution, we performed the phase-field simulation and experiment to investigate the multiple splitting behaviors of lamellar Ti-Al alloys. The splitting mode of lamella is discovered, inner splitting (IS) and outside splitting (OS). The originations of splitting are found to come from the high interfacial energy of step-like interface between γ variants for the IS, and the stress concentration at α2/γ interface drives step-like interface for the OS. The lamellar splitting is complied with the energy change in matter, decreasing in total free energy and elastic energy, while increasing in interfacial energy. These findings provide the new mechanisms of internal lamellar interface breaking driven by the interfacial energy. Therefrom, the expected matter features will be achieved by the strategy of microstructure modulation and optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信