优化苯类碳氢化合物热力学性质的三种通用图形指数的结构-性质模型

IF 3.7 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Suha Wazzan , Sakander Hayat , Wafi Ismail
{"title":"优化苯类碳氢化合物热力学性质的三种通用图形指数的结构-性质模型","authors":"Suha Wazzan ,&nbsp;Sakander Hayat ,&nbsp;Wafi Ismail","doi":"10.1016/j.jksus.2024.103541","DOIUrl":null,"url":null,"abstract":"<div><div>Cheminformatics is an interdisciplinary field that combines principles of chemistry, computer science, and information technology to process, store, analyze, and interpret chemical data. One area of cheminformatics is quantitative structure–property relationship (QSPR) modeling which is a computational approach that correlates the structural attributes of chemical compounds with their physical, chemical, or biological properties to predict the behavior and characteristics of new or untested compounds. Structure descriptors deliver contemporary mathematical tools required for QSPR modeling. One of a significant class of such descriptors is graph-based descriptors known as graphical descriptors. A degree-based graphical descriptor/invariant of a <span><math><mi>υ</mi></math></span>-vertex graph <span><math><mrow><mi>Ω</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> has a general structure <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mi>j</mi><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Ω</mi></mrow></msub></mrow></msub><mi>π</mi><mfenced><mrow><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></mrow></mfenced></mrow></math></span>, where <span><math><mi>π</mi></math></span> is bivariate symmetric map, and <span><math><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span> is the degree of vertex <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>Ω</mi></mrow></msub></mrow></math></span>. For <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>, if <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>×</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> (resp. <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>+</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>, then <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span> is called the general product-connectivity <span><math><mrow><mi>P</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> (resp. sum-connectivity <span><math><mrow><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span>) index of <span><math><mi>Ω</mi></math></span>. Moreover, the general Sombor index <span><math><mrow><mi>S</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> has the structure <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msubsup><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>×</mo><msubsup><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>. By choosing the heat capacity <span><math><mrow><mi>Δ</mi><mi>H</mi></mrow></math></span> and the entropy <span><math><mi>E</mi></math></span> as representatives of thermodynamic properties, we in this paper find optimal value(s) of <span><math><mi>α</mi></math></span> which deliver the strongest potential of the predictors <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mi>P</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>S</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> for predicting <span><math><mrow><mi>Δ</mi><mi>H</mi></mrow></math></span> and <span><math><mi>E</mi></math></span> of benzenoid hydrocarbons. In order to achieve this, we employ tools such as discrete optimization and multivariate regression analysis. This, in turn, study completely solves two open problems proposed in the literature.</div></div>","PeriodicalId":16205,"journal":{"name":"Journal of King Saud University - Science","volume":"36 11","pages":"Article 103541"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing structure-property models of three general graphical indices for thermodynamic properties of benzenoid hydrocarbons\",\"authors\":\"Suha Wazzan ,&nbsp;Sakander Hayat ,&nbsp;Wafi Ismail\",\"doi\":\"10.1016/j.jksus.2024.103541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cheminformatics is an interdisciplinary field that combines principles of chemistry, computer science, and information technology to process, store, analyze, and interpret chemical data. One area of cheminformatics is quantitative structure–property relationship (QSPR) modeling which is a computational approach that correlates the structural attributes of chemical compounds with their physical, chemical, or biological properties to predict the behavior and characteristics of new or untested compounds. Structure descriptors deliver contemporary mathematical tools required for QSPR modeling. One of a significant class of such descriptors is graph-based descriptors known as graphical descriptors. A degree-based graphical descriptor/invariant of a <span><math><mi>υ</mi></math></span>-vertex graph <span><math><mrow><mi>Ω</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> has a general structure <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mi>j</mi><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Ω</mi></mrow></msub></mrow></msub><mi>π</mi><mfenced><mrow><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></mrow></mfenced></mrow></math></span>, where <span><math><mi>π</mi></math></span> is bivariate symmetric map, and <span><math><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span> is the degree of vertex <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>Ω</mi></mrow></msub></mrow></math></span>. For <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>, if <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>×</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> (resp. <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>+</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>, then <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span> is called the general product-connectivity <span><math><mrow><mi>P</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> (resp. sum-connectivity <span><math><mrow><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span>) index of <span><math><mi>Ω</mi></math></span>. Moreover, the general Sombor index <span><math><mrow><mi>S</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> has the structure <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msubsup><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>×</mo><msubsup><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>. By choosing the heat capacity <span><math><mrow><mi>Δ</mi><mi>H</mi></mrow></math></span> and the entropy <span><math><mi>E</mi></math></span> as representatives of thermodynamic properties, we in this paper find optimal value(s) of <span><math><mi>α</mi></math></span> which deliver the strongest potential of the predictors <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mi>P</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>S</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> for predicting <span><math><mrow><mi>Δ</mi><mi>H</mi></mrow></math></span> and <span><math><mi>E</mi></math></span> of benzenoid hydrocarbons. In order to achieve this, we employ tools such as discrete optimization and multivariate regression analysis. This, in turn, study completely solves two open problems proposed in the literature.</div></div>\",\"PeriodicalId\":16205,\"journal\":{\"name\":\"Journal of King Saud University - Science\",\"volume\":\"36 11\",\"pages\":\"Article 103541\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University - Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1018364724004531\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University - Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1018364724004531","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

化学信息学是一个跨学科领域,它结合了化学原理、计算机科学和信息技术,用于处理、存储、分析和解释化学数据。定量结构-性能关系(QSPR)建模是化学信息学的一个领域,它是一种计算方法,将化合物的结构属性与其物理、化学或生物特性相关联,以预测新的或未经测试的化合物的行为和特性。结构描述符提供了 QSPR 建模所需的现代数学工具。其中一类重要的描述符是基于图形的描述符,即图形描述符。υ-顶点图 Ω=(VΩ,EΩ)的基于度的图形描述符/常量具有一般结构 GDd=∑ij∈EΩπdegxi,degxj,其中 π 是双变量对称图,degxi 是顶点 xi∈VΩ 的度。对于 α∈R∖{0},如果 π=(degxi×degxj)α (或者 π=(degxi+degxj)α),那么 GDd 称为 Ω 的一般积连接性 PCα (或者和连接性 SCα)索引。此外,一般松博指数 SOα 具有 π=(degxi2×degxj2)α 结构。通过选择热容量 ΔH 和熵 E 作为热力学性质的代表,我们在本文中找到了最佳的 α 值,该值能使预测器 GDd∈{PCα,SCα,SOα}在预测苯类碳氢化合物的 ΔH 和 E 时发挥最大潜力。为此,我们采用了离散优化和多元回归分析等工具。这反过来又彻底解决了文献中提出的两个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing structure-property models of three general graphical indices for thermodynamic properties of benzenoid hydrocarbons
Cheminformatics is an interdisciplinary field that combines principles of chemistry, computer science, and information technology to process, store, analyze, and interpret chemical data. One area of cheminformatics is quantitative structure–property relationship (QSPR) modeling which is a computational approach that correlates the structural attributes of chemical compounds with their physical, chemical, or biological properties to predict the behavior and characteristics of new or untested compounds. Structure descriptors deliver contemporary mathematical tools required for QSPR modeling. One of a significant class of such descriptors is graph-based descriptors known as graphical descriptors. A degree-based graphical descriptor/invariant of a υ-vertex graph Ω=(VΩ,EΩ) has a general structure GDd=ijEΩπdegxi,degxj, where π is bivariate symmetric map, and degxi is the degree of vertex xiVΩ. For αR{0}, if π=(degxi×degxj)α (resp. π=(degxi+degxj)α, then GDd is called the general product-connectivity PCα (resp. sum-connectivity SCα) index of Ω. Moreover, the general Sombor index SOα has the structure π=(degxi2×degxj2)α. By choosing the heat capacity ΔH and the entropy E as representatives of thermodynamic properties, we in this paper find optimal value(s) of α which deliver the strongest potential of the predictors GDd{PCα,SCα,SOα} for predicting ΔH and E of benzenoid hydrocarbons. In order to achieve this, we employ tools such as discrete optimization and multivariate regression analysis. This, in turn, study completely solves two open problems proposed in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of King Saud University - Science
Journal of King Saud University - Science Multidisciplinary-Multidisciplinary
CiteScore
7.20
自引率
2.60%
发文量
642
审稿时长
49 days
期刊介绍: Journal of King Saud University – Science is an official refereed publication of King Saud University and the publishing services is provided by Elsevier. It publishes peer-reviewed research articles in the fields of physics, astronomy, mathematics, statistics, chemistry, biochemistry, earth sciences, life and environmental sciences on the basis of scientific originality and interdisciplinary interest. It is devoted primarily to research papers but short communications, reviews and book reviews are also included. The editorial board and associated editors, composed of prominent scientists from around the world, are representative of the disciplines covered by the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信