{"title":"优化苯类碳氢化合物热力学性质的三种通用图形指数的结构-性质模型","authors":"Suha Wazzan , Sakander Hayat , Wafi Ismail","doi":"10.1016/j.jksus.2024.103541","DOIUrl":null,"url":null,"abstract":"<div><div>Cheminformatics is an interdisciplinary field that combines principles of chemistry, computer science, and information technology to process, store, analyze, and interpret chemical data. One area of cheminformatics is quantitative structure–property relationship (QSPR) modeling which is a computational approach that correlates the structural attributes of chemical compounds with their physical, chemical, or biological properties to predict the behavior and characteristics of new or untested compounds. Structure descriptors deliver contemporary mathematical tools required for QSPR modeling. One of a significant class of such descriptors is graph-based descriptors known as graphical descriptors. A degree-based graphical descriptor/invariant of a <span><math><mi>υ</mi></math></span>-vertex graph <span><math><mrow><mi>Ω</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> has a general structure <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mi>j</mi><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Ω</mi></mrow></msub></mrow></msub><mi>π</mi><mfenced><mrow><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></mrow></mfenced></mrow></math></span>, where <span><math><mi>π</mi></math></span> is bivariate symmetric map, and <span><math><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span> is the degree of vertex <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>Ω</mi></mrow></msub></mrow></math></span>. For <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>, if <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>×</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> (resp. <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>+</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>, then <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span> is called the general product-connectivity <span><math><mrow><mi>P</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> (resp. sum-connectivity <span><math><mrow><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span>) index of <span><math><mi>Ω</mi></math></span>. Moreover, the general Sombor index <span><math><mrow><mi>S</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> has the structure <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msubsup><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>×</mo><msubsup><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>. By choosing the heat capacity <span><math><mrow><mi>Δ</mi><mi>H</mi></mrow></math></span> and the entropy <span><math><mi>E</mi></math></span> as representatives of thermodynamic properties, we in this paper find optimal value(s) of <span><math><mi>α</mi></math></span> which deliver the strongest potential of the predictors <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mi>P</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>S</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> for predicting <span><math><mrow><mi>Δ</mi><mi>H</mi></mrow></math></span> and <span><math><mi>E</mi></math></span> of benzenoid hydrocarbons. In order to achieve this, we employ tools such as discrete optimization and multivariate regression analysis. This, in turn, study completely solves two open problems proposed in the literature.</div></div>","PeriodicalId":16205,"journal":{"name":"Journal of King Saud University - Science","volume":"36 11","pages":"Article 103541"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing structure-property models of three general graphical indices for thermodynamic properties of benzenoid hydrocarbons\",\"authors\":\"Suha Wazzan , Sakander Hayat , Wafi Ismail\",\"doi\":\"10.1016/j.jksus.2024.103541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cheminformatics is an interdisciplinary field that combines principles of chemistry, computer science, and information technology to process, store, analyze, and interpret chemical data. One area of cheminformatics is quantitative structure–property relationship (QSPR) modeling which is a computational approach that correlates the structural attributes of chemical compounds with their physical, chemical, or biological properties to predict the behavior and characteristics of new or untested compounds. Structure descriptors deliver contemporary mathematical tools required for QSPR modeling. One of a significant class of such descriptors is graph-based descriptors known as graphical descriptors. A degree-based graphical descriptor/invariant of a <span><math><mi>υ</mi></math></span>-vertex graph <span><math><mrow><mi>Ω</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> has a general structure <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mi>j</mi><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Ω</mi></mrow></msub></mrow></msub><mi>π</mi><mfenced><mrow><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></mrow></mfenced></mrow></math></span>, where <span><math><mi>π</mi></math></span> is bivariate symmetric map, and <span><math><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span> is the degree of vertex <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>Ω</mi></mrow></msub></mrow></math></span>. For <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>, if <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>×</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> (resp. <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>+</mo><msub><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>, then <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span> is called the general product-connectivity <span><math><mrow><mi>P</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> (resp. sum-connectivity <span><math><mrow><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span>) index of <span><math><mi>Ω</mi></math></span>. Moreover, the general Sombor index <span><math><mrow><mi>S</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> has the structure <span><math><mrow><mi>π</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msubsup><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>×</mo><msubsup><mrow><mi>deg</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>. By choosing the heat capacity <span><math><mrow><mi>Δ</mi><mi>H</mi></mrow></math></span> and the entropy <span><math><mi>E</mi></math></span> as representatives of thermodynamic properties, we in this paper find optimal value(s) of <span><math><mi>α</mi></math></span> which deliver the strongest potential of the predictors <span><math><mrow><mi>G</mi><msub><mrow><mi>D</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mi>P</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>S</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> for predicting <span><math><mrow><mi>Δ</mi><mi>H</mi></mrow></math></span> and <span><math><mi>E</mi></math></span> of benzenoid hydrocarbons. In order to achieve this, we employ tools such as discrete optimization and multivariate regression analysis. This, in turn, study completely solves two open problems proposed in the literature.</div></div>\",\"PeriodicalId\":16205,\"journal\":{\"name\":\"Journal of King Saud University - Science\",\"volume\":\"36 11\",\"pages\":\"Article 103541\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University - Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1018364724004531\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University - Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1018364724004531","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Optimizing structure-property models of three general graphical indices for thermodynamic properties of benzenoid hydrocarbons
Cheminformatics is an interdisciplinary field that combines principles of chemistry, computer science, and information technology to process, store, analyze, and interpret chemical data. One area of cheminformatics is quantitative structure–property relationship (QSPR) modeling which is a computational approach that correlates the structural attributes of chemical compounds with their physical, chemical, or biological properties to predict the behavior and characteristics of new or untested compounds. Structure descriptors deliver contemporary mathematical tools required for QSPR modeling. One of a significant class of such descriptors is graph-based descriptors known as graphical descriptors. A degree-based graphical descriptor/invariant of a -vertex graph has a general structure , where is bivariate symmetric map, and is the degree of vertex . For , if (resp. , then is called the general product-connectivity (resp. sum-connectivity ) index of . Moreover, the general Sombor index has the structure . By choosing the heat capacity and the entropy as representatives of thermodynamic properties, we in this paper find optimal value(s) of which deliver the strongest potential of the predictors for predicting and of benzenoid hydrocarbons. In order to achieve this, we employ tools such as discrete optimization and multivariate regression analysis. This, in turn, study completely solves two open problems proposed in the literature.
期刊介绍:
Journal of King Saud University – Science is an official refereed publication of King Saud University and the publishing services is provided by Elsevier. It publishes peer-reviewed research articles in the fields of physics, astronomy, mathematics, statistics, chemistry, biochemistry, earth sciences, life and environmental sciences on the basis of scientific originality and interdisciplinary interest. It is devoted primarily to research papers but short communications, reviews and book reviews are also included. The editorial board and associated editors, composed of prominent scientists from around the world, are representative of the disciplines covered by the journal.