光子诱导钯催化剂再生,用于胺与脲的羰基化反应

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Junbao Peng , Jin Xie , Zelong Li , Can Li
{"title":"光子诱导钯催化剂再生,用于胺与脲的羰基化反应","authors":"Junbao Peng ,&nbsp;Jin Xie ,&nbsp;Zelong Li ,&nbsp;Can Li","doi":"10.1016/S1872-2067(24)60125-7","DOIUrl":null,"url":null,"abstract":"<div><div>Substituted ureas hold considerable significance in both natural and synthetic chemicals. Pd-based homogenous catalyst has been used for the urea synthesis, however the aggregation of Pd(0) species leads to the deactivation of the catalyst even under mild conditions. Here, we present a photon-involved carbonylation of amines to synthesize ureas, achieving product yields of up to 99%, using Pd(OAc)<sub>2</sub> and KI without losing the performance owing to the fast regeneration of Pd species under light irradiation. Reaction kinetics results and ultraviolet-visible absorption spectra indicate the regeneration of the Pd species is realized by the light irradiation (below 450 nm) which induces the oxidation reaction between HI and O<sub>2</sub> to produce I<sub>2</sub>, so that the active species PdI<sub>2</sub> is regenerated through the reaction between Pd(0) and the I<sub>2</sub>.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"66 ","pages":"Pages 146-151"},"PeriodicalIF":15.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon-induced regeneration of Pd catalyst for carbonylation of amines to ureas\",\"authors\":\"Junbao Peng ,&nbsp;Jin Xie ,&nbsp;Zelong Li ,&nbsp;Can Li\",\"doi\":\"10.1016/S1872-2067(24)60125-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Substituted ureas hold considerable significance in both natural and synthetic chemicals. Pd-based homogenous catalyst has been used for the urea synthesis, however the aggregation of Pd(0) species leads to the deactivation of the catalyst even under mild conditions. Here, we present a photon-involved carbonylation of amines to synthesize ureas, achieving product yields of up to 99%, using Pd(OAc)<sub>2</sub> and KI without losing the performance owing to the fast regeneration of Pd species under light irradiation. Reaction kinetics results and ultraviolet-visible absorption spectra indicate the regeneration of the Pd species is realized by the light irradiation (below 450 nm) which induces the oxidation reaction between HI and O<sub>2</sub> to produce I<sub>2</sub>, so that the active species PdI<sub>2</sub> is regenerated through the reaction between Pd(0) and the I<sub>2</sub>.</div></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"66 \",\"pages\":\"Pages 146-151\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724601257\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601257","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

取代脲在天然和合成化学品中都具有重要意义。钯基均相催化剂已被用于脲的合成,但即使在温和条件下,钯(0)物种的聚集也会导致催化剂失活。在此,我们提出了一种光子参与的胺羰基化合成脲的方法,使用 Pd(OAc)2 和 KI,由于 Pd 物种在光照射下可快速再生,因此产品收率高达 99%,且性能不变。反应动力学结果和紫外可见吸收光谱表明,Pd 物种的再生是通过光照射(450 纳米以下)诱导 HI 和 O2 发生氧化反应生成 I2,从而通过 Pd(0) 和 I2 的反应再生出活性物种 PdI2 来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photon-induced regeneration of Pd catalyst for carbonylation of amines to ureas
Substituted ureas hold considerable significance in both natural and synthetic chemicals. Pd-based homogenous catalyst has been used for the urea synthesis, however the aggregation of Pd(0) species leads to the deactivation of the catalyst even under mild conditions. Here, we present a photon-involved carbonylation of amines to synthesize ureas, achieving product yields of up to 99%, using Pd(OAc)2 and KI without losing the performance owing to the fast regeneration of Pd species under light irradiation. Reaction kinetics results and ultraviolet-visible absorption spectra indicate the regeneration of the Pd species is realized by the light irradiation (below 450 nm) which induces the oxidation reaction between HI and O2 to produce I2, so that the active species PdI2 is regenerated through the reaction between Pd(0) and the I2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信