{"title":"利用机器学习提高锂空气电池 MXene 阴极材料 OER/ORR 半反应的电化学活性","authors":"Natalia V. Kireeva, Aslan Yu Tsivadze","doi":"10.1016/j.ssi.2024.116742","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-air batteries are the target of the ever-growing interest as considering as the new “lead” technology among the most promising electrochemical energy storage solutions. The projected energy density of lithium-air batteries considered in this study exceeds current commercial lithium-ion batteries by more than three times. In this study, we consider the characteristics of MXenes, 2D layered phases with such attractive characteristics as a high specific surface area with the numerous active reaction centers, mechanical strength, the diverse functional characteristics and the perspectives of scalability of their production, which are of importance for the practical realization of Li-air batteries of different architecture. The formation of the phases of complex content and structure inherent to pseudomorphism at the interface, as it is actual for the objects of our study, allows one to conclude that it is necessary to consider the processes that occur at the interfaces of lithium-air battery cathodes in direct relation to the cathode material used. Machine learning methods were involved in model development for <em>(i)</em> MXenes predicting the electrochemical phase diagrams, Pourbaix diagrams, which circumscribe the stability window of MXenes of certain composition formed with synthesis-defined terminations as a function of pH and U<sub><em>SHE</em></sub> for single and double MXenes and <em>(ii)</em> the elastic characteristics of MAX phases, precursors of MXenes, to assess the commensurability of the interface of MXene cathode materials and Li<sub>2</sub>O<sub>2</sub> phase as well as the prospects of using target MXene compositions combined with the solid electrolyte materials of different families for employing in all-solid-state Li-air batteries. The obtained models demonstrate high predictive performance that argue on the possibility to use them for rational screening of new phases with desired functional characteristics.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"418 ","pages":"Article 116742"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using machine learning towards enhancement of electrochemical activity in OER/ORR half-reactions of MXene cathode materials for Li-air batteries\",\"authors\":\"Natalia V. Kireeva, Aslan Yu Tsivadze\",\"doi\":\"10.1016/j.ssi.2024.116742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal-air batteries are the target of the ever-growing interest as considering as the new “lead” technology among the most promising electrochemical energy storage solutions. The projected energy density of lithium-air batteries considered in this study exceeds current commercial lithium-ion batteries by more than three times. In this study, we consider the characteristics of MXenes, 2D layered phases with such attractive characteristics as a high specific surface area with the numerous active reaction centers, mechanical strength, the diverse functional characteristics and the perspectives of scalability of their production, which are of importance for the practical realization of Li-air batteries of different architecture. The formation of the phases of complex content and structure inherent to pseudomorphism at the interface, as it is actual for the objects of our study, allows one to conclude that it is necessary to consider the processes that occur at the interfaces of lithium-air battery cathodes in direct relation to the cathode material used. Machine learning methods were involved in model development for <em>(i)</em> MXenes predicting the electrochemical phase diagrams, Pourbaix diagrams, which circumscribe the stability window of MXenes of certain composition formed with synthesis-defined terminations as a function of pH and U<sub><em>SHE</em></sub> for single and double MXenes and <em>(ii)</em> the elastic characteristics of MAX phases, precursors of MXenes, to assess the commensurability of the interface of MXene cathode materials and Li<sub>2</sub>O<sub>2</sub> phase as well as the prospects of using target MXene compositions combined with the solid electrolyte materials of different families for employing in all-solid-state Li-air batteries. The obtained models demonstrate high predictive performance that argue on the possibility to use them for rational screening of new phases with desired functional characteristics.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"418 \",\"pages\":\"Article 116742\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727382400290X\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727382400290X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Using machine learning towards enhancement of electrochemical activity in OER/ORR half-reactions of MXene cathode materials for Li-air batteries
Metal-air batteries are the target of the ever-growing interest as considering as the new “lead” technology among the most promising electrochemical energy storage solutions. The projected energy density of lithium-air batteries considered in this study exceeds current commercial lithium-ion batteries by more than three times. In this study, we consider the characteristics of MXenes, 2D layered phases with such attractive characteristics as a high specific surface area with the numerous active reaction centers, mechanical strength, the diverse functional characteristics and the perspectives of scalability of their production, which are of importance for the practical realization of Li-air batteries of different architecture. The formation of the phases of complex content and structure inherent to pseudomorphism at the interface, as it is actual for the objects of our study, allows one to conclude that it is necessary to consider the processes that occur at the interfaces of lithium-air battery cathodes in direct relation to the cathode material used. Machine learning methods were involved in model development for (i) MXenes predicting the electrochemical phase diagrams, Pourbaix diagrams, which circumscribe the stability window of MXenes of certain composition formed with synthesis-defined terminations as a function of pH and USHE for single and double MXenes and (ii) the elastic characteristics of MAX phases, precursors of MXenes, to assess the commensurability of the interface of MXene cathode materials and Li2O2 phase as well as the prospects of using target MXene compositions combined with the solid electrolyte materials of different families for employing in all-solid-state Li-air batteries. The obtained models demonstrate high predictive performance that argue on the possibility to use them for rational screening of new phases with desired functional characteristics.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.