Yue Yuan , Shijia Zhang , Xiaoshan Tan , Jili Deng , Shengjie Gong , Xueling Zhai , Xiangru Xu , Changchun Ruan , Ying Hu , Junjie Zhang , Zhao Peng
{"title":"来自 Allomyrina dichotoma 的肠道细菌 Bacillus siamensis M54 是一种潜在的玉米茎腐病生物控制剂","authors":"Yue Yuan , Shijia Zhang , Xiaoshan Tan , Jili Deng , Shengjie Gong , Xueling Zhai , Xiangru Xu , Changchun Ruan , Ying Hu , Junjie Zhang , Zhao Peng","doi":"10.1016/j.biocontrol.2024.105660","DOIUrl":null,"url":null,"abstract":"<div><div>Maize stalk rot, caused by <em>Fusarium</em> spp., is a significant disease that adversely impacts the yield and quality of corn. Biological control plays a crucial role in managing numerous crop diseases, including maize stalk rot. Biocontrol agents are predominantly derived from soil and plant tissues, with limited reports on isolating highly efficient biocontrol agents from insects. In this study, 144 bacterial strains were isolated from the intestinal tract of third instar larvae of <em>Allomyrina dichotoma</em>. Through dual culture tests, twelve strains exhibiting strong antagonism against two maize stalk rot pathogens, <em>F. graminearum</em> and <em>F. verticillioides</em>, were identified. Among them, the M54 strain exhibited the most potent antagonistic effect against the two pathogenic fungi and was identified as <em>Bacillus siamensis</em> through 16S rRNA gene sequence analysis. The complete genome for M54 was assembled using PacBio single-molecule real-time (SMRT) and Illumina sequencing technologies. Whole genome phylogenetic analysis further confirmed M54 was <em>B. siamensis</em>. Microscopic examination revealed that M54 had the ability to inhibit the fungal spore germination and hyphal formation. Furthermore, M54 exhibited effective colonization in the maize rhizosphere and enhanced maize growth. It showed that treatment with M54 significantly suppressed lesion expansion induced by <em>F. graminearum</em> on maize stalks in the seedling and adult plant assays. Genomic analysis using antiSMASH revealed 11 gene clusters for secondary metabolite synthesis. This study provides a novel approach for isolating biocontrol agents to manage plant diseases and highlights <em>B. siamensis</em> M54 as a potential efficient biocontrol agent for maize stalk rot.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"199 ","pages":"Article 105660"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intestinal bacterium Bacillus siamensis M54 from Allomyrina dichotoma is a potential biocontrol agent against maize stalk rot\",\"authors\":\"Yue Yuan , Shijia Zhang , Xiaoshan Tan , Jili Deng , Shengjie Gong , Xueling Zhai , Xiangru Xu , Changchun Ruan , Ying Hu , Junjie Zhang , Zhao Peng\",\"doi\":\"10.1016/j.biocontrol.2024.105660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Maize stalk rot, caused by <em>Fusarium</em> spp., is a significant disease that adversely impacts the yield and quality of corn. Biological control plays a crucial role in managing numerous crop diseases, including maize stalk rot. Biocontrol agents are predominantly derived from soil and plant tissues, with limited reports on isolating highly efficient biocontrol agents from insects. In this study, 144 bacterial strains were isolated from the intestinal tract of third instar larvae of <em>Allomyrina dichotoma</em>. Through dual culture tests, twelve strains exhibiting strong antagonism against two maize stalk rot pathogens, <em>F. graminearum</em> and <em>F. verticillioides</em>, were identified. Among them, the M54 strain exhibited the most potent antagonistic effect against the two pathogenic fungi and was identified as <em>Bacillus siamensis</em> through 16S rRNA gene sequence analysis. The complete genome for M54 was assembled using PacBio single-molecule real-time (SMRT) and Illumina sequencing technologies. Whole genome phylogenetic analysis further confirmed M54 was <em>B. siamensis</em>. Microscopic examination revealed that M54 had the ability to inhibit the fungal spore germination and hyphal formation. Furthermore, M54 exhibited effective colonization in the maize rhizosphere and enhanced maize growth. It showed that treatment with M54 significantly suppressed lesion expansion induced by <em>F. graminearum</em> on maize stalks in the seedling and adult plant assays. Genomic analysis using antiSMASH revealed 11 gene clusters for secondary metabolite synthesis. This study provides a novel approach for isolating biocontrol agents to manage plant diseases and highlights <em>B. siamensis</em> M54 as a potential efficient biocontrol agent for maize stalk rot.</div></div>\",\"PeriodicalId\":8880,\"journal\":{\"name\":\"Biological Control\",\"volume\":\"199 \",\"pages\":\"Article 105660\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Control\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049964424002251\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964424002251","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Intestinal bacterium Bacillus siamensis M54 from Allomyrina dichotoma is a potential biocontrol agent against maize stalk rot
Maize stalk rot, caused by Fusarium spp., is a significant disease that adversely impacts the yield and quality of corn. Biological control plays a crucial role in managing numerous crop diseases, including maize stalk rot. Biocontrol agents are predominantly derived from soil and plant tissues, with limited reports on isolating highly efficient biocontrol agents from insects. In this study, 144 bacterial strains were isolated from the intestinal tract of third instar larvae of Allomyrina dichotoma. Through dual culture tests, twelve strains exhibiting strong antagonism against two maize stalk rot pathogens, F. graminearum and F. verticillioides, were identified. Among them, the M54 strain exhibited the most potent antagonistic effect against the two pathogenic fungi and was identified as Bacillus siamensis through 16S rRNA gene sequence analysis. The complete genome for M54 was assembled using PacBio single-molecule real-time (SMRT) and Illumina sequencing technologies. Whole genome phylogenetic analysis further confirmed M54 was B. siamensis. Microscopic examination revealed that M54 had the ability to inhibit the fungal spore germination and hyphal formation. Furthermore, M54 exhibited effective colonization in the maize rhizosphere and enhanced maize growth. It showed that treatment with M54 significantly suppressed lesion expansion induced by F. graminearum on maize stalks in the seedling and adult plant assays. Genomic analysis using antiSMASH revealed 11 gene clusters for secondary metabolite synthesis. This study provides a novel approach for isolating biocontrol agents to manage plant diseases and highlights B. siamensis M54 as a potential efficient biocontrol agent for maize stalk rot.
期刊介绍:
Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents.
The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.