{"title":"洞察植物对微粒污染的策略性反应:从表型组到基因组","authors":"Soumya Chatterjee , Mamun Mandal , Mrinalini Kakkar , Ganapati Basak , Nasrin Banu Khan , Ranadhir Chakraborty , Robert Popek , Abhijit Sarkar , Chandan Barman","doi":"10.1016/j.stress.2024.100671","DOIUrl":null,"url":null,"abstract":"<div><div>Particulate matter (PM) is an extremely overlooked air pollutant with drastic effects on the biome, owing to the industrial and agricultural advancements, significantly exacerbating global environmental contamination levels. The altered atmosphere in urban settings due to PM pollution profoundly influences plants' morphological, physiochemical state and allied responses. PM exposure leads to drastic decrease in plant-height, phytomass, leaf number, leaf length and productivity. PM change the epicuticular wax patterns, penetrates plant tissue through stomata, and denatures the chloroplast pigmentation. It changes leaves' light absorption and reflection patterns, weakening the total radiation that reaches the chlorophyll antenna and ultimately reducing the photosynthetic rate and electron transport chain. Consequently, this alters plants morphology like wax deposits, thick epidermis, and long trichomes near stomata. Moreover, PM stress also adversely effects gluconeogenesis, amino acid biosynthesis, TCA cycle, and photorespiration-associated gene expression. Several transcription factors, such as <em>MYB, C3H</em>, and <em>G2</em>-homologues, are activated as a collective stress response. Additionally, ascorbic acid, proline and soluble sugars accumulate and several antioxidants are produced to scavenge the PM-induced reactive oxygen species (ROS). This review aims to document plants' various responses to PM pollution in their respective eco-geographic settings and investigate ways used by plants to mitigate PM pollution. We also enumerate the consequences of PM pollution on plants and the corresponding phenomic and genetic mechanisms through which plants adapt.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100671"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An insight to strategical responses of particulate pollution in plants: From phenome to genome\",\"authors\":\"Soumya Chatterjee , Mamun Mandal , Mrinalini Kakkar , Ganapati Basak , Nasrin Banu Khan , Ranadhir Chakraborty , Robert Popek , Abhijit Sarkar , Chandan Barman\",\"doi\":\"10.1016/j.stress.2024.100671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Particulate matter (PM) is an extremely overlooked air pollutant with drastic effects on the biome, owing to the industrial and agricultural advancements, significantly exacerbating global environmental contamination levels. The altered atmosphere in urban settings due to PM pollution profoundly influences plants' morphological, physiochemical state and allied responses. PM exposure leads to drastic decrease in plant-height, phytomass, leaf number, leaf length and productivity. PM change the epicuticular wax patterns, penetrates plant tissue through stomata, and denatures the chloroplast pigmentation. It changes leaves' light absorption and reflection patterns, weakening the total radiation that reaches the chlorophyll antenna and ultimately reducing the photosynthetic rate and electron transport chain. Consequently, this alters plants morphology like wax deposits, thick epidermis, and long trichomes near stomata. Moreover, PM stress also adversely effects gluconeogenesis, amino acid biosynthesis, TCA cycle, and photorespiration-associated gene expression. Several transcription factors, such as <em>MYB, C3H</em>, and <em>G2</em>-homologues, are activated as a collective stress response. Additionally, ascorbic acid, proline and soluble sugars accumulate and several antioxidants are produced to scavenge the PM-induced reactive oxygen species (ROS). This review aims to document plants' various responses to PM pollution in their respective eco-geographic settings and investigate ways used by plants to mitigate PM pollution. We also enumerate the consequences of PM pollution on plants and the corresponding phenomic and genetic mechanisms through which plants adapt.</div></div>\",\"PeriodicalId\":34736,\"journal\":{\"name\":\"Plant Stress\",\"volume\":\"14 \",\"pages\":\"Article 100671\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667064X24003245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24003245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
An insight to strategical responses of particulate pollution in plants: From phenome to genome
Particulate matter (PM) is an extremely overlooked air pollutant with drastic effects on the biome, owing to the industrial and agricultural advancements, significantly exacerbating global environmental contamination levels. The altered atmosphere in urban settings due to PM pollution profoundly influences plants' morphological, physiochemical state and allied responses. PM exposure leads to drastic decrease in plant-height, phytomass, leaf number, leaf length and productivity. PM change the epicuticular wax patterns, penetrates plant tissue through stomata, and denatures the chloroplast pigmentation. It changes leaves' light absorption and reflection patterns, weakening the total radiation that reaches the chlorophyll antenna and ultimately reducing the photosynthetic rate and electron transport chain. Consequently, this alters plants morphology like wax deposits, thick epidermis, and long trichomes near stomata. Moreover, PM stress also adversely effects gluconeogenesis, amino acid biosynthesis, TCA cycle, and photorespiration-associated gene expression. Several transcription factors, such as MYB, C3H, and G2-homologues, are activated as a collective stress response. Additionally, ascorbic acid, proline and soluble sugars accumulate and several antioxidants are produced to scavenge the PM-induced reactive oxygen species (ROS). This review aims to document plants' various responses to PM pollution in their respective eco-geographic settings and investigate ways used by plants to mitigate PM pollution. We also enumerate the consequences of PM pollution on plants and the corresponding phenomic and genetic mechanisms through which plants adapt.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.