Almudena Martínez-Martínez , Maria Ángeles Botella , Manuel Francisco García-Legaz , Elvira López-Gómez , Jesus Amo , Lourdes Rubio , Jose Antonio Fernández , Vicente Martínez , Francisco Rubio , Manuel Nieves-Cordones
{"title":"SlNRT1.5 转运体和 SlSKOR K+ 通道共同促进番茄植株的 K+ 转运","authors":"Almudena Martínez-Martínez , Maria Ángeles Botella , Manuel Francisco García-Legaz , Elvira López-Gómez , Jesus Amo , Lourdes Rubio , Jose Antonio Fernández , Vicente Martínez , Francisco Rubio , Manuel Nieves-Cordones","doi":"10.1016/j.stress.2024.100689","DOIUrl":null,"url":null,"abstract":"<div><div>Accumulation of K<sup>+</sup> in shoots is largely dependent on K<sup>+</sup> transport via the xylem and has important implications not only for K<sup>+</sup> nutrition but also for stress tolerance. In tomato plants, the K<sup>+</sup> channel SlSKOR contributed to K<sup>+</sup> translocation but the decrease in the shoot K<sup>+</sup> content in <em>slskor</em> mutants was only ∼15 %, indicating that additional K<sup>+</sup> transport systems operated in the tomato stele. Here, we studied the physiological roles of the transporter SlNRT1.5 in tomato plants, whose homolog in Arabidopsis, AtNRT1.5, contributed to xylem K<sup>+</sup> load. By using heterologous expression of SlNRT1.5 in Xenopus oocytes and a <em>slnrt1.5</em> knock-out mutant, we have gained insights into its role in shoot K<sup>+</sup> nutrition. Expression of SlNRT1.5 in Xenopus oocytes resulted in K<sup>+</sup> efflux, similar to that mediated by AtNRT1.5, which could indicate that SlNRT1.5 operates as a K<sup>+</sup> transport system. Plants lacking <em>slnrt1.5</em> accumulated less K<sup>+</sup> in shoots than WT plants under low external pH (4.5), and low supply of K<sup>+</sup> (0.05 mM) and N (0.5 mM). Interestingly, <em>slnrt1.5</em> plants accumulated less Na<sup>+</sup> and Cl<sup>-</sup> in shoots than WT plants. Further analyses on <em>slskor slnrt1.5</em> double mutant plants revealed an overlapping role of SlSKOR and SlNRT1.5 in shoot K<sup>+</sup> accumulation. Double mutants showed a 40 % decrease in shoot K<sup>+</sup> content in comparison with <em>slskor</em> and <em>slnrt1.5</em> single mutants. Altogether, this study showed that SlNRT1.5 and SlSKOR are major players in shoot K<sup>+</sup> accumulation in tomato plants.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100689"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SlNRT1.5 transporter and the SlSKOR K+ channel jointly contribute to K+ translocation in tomato plants\",\"authors\":\"Almudena Martínez-Martínez , Maria Ángeles Botella , Manuel Francisco García-Legaz , Elvira López-Gómez , Jesus Amo , Lourdes Rubio , Jose Antonio Fernández , Vicente Martínez , Francisco Rubio , Manuel Nieves-Cordones\",\"doi\":\"10.1016/j.stress.2024.100689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accumulation of K<sup>+</sup> in shoots is largely dependent on K<sup>+</sup> transport via the xylem and has important implications not only for K<sup>+</sup> nutrition but also for stress tolerance. In tomato plants, the K<sup>+</sup> channel SlSKOR contributed to K<sup>+</sup> translocation but the decrease in the shoot K<sup>+</sup> content in <em>slskor</em> mutants was only ∼15 %, indicating that additional K<sup>+</sup> transport systems operated in the tomato stele. Here, we studied the physiological roles of the transporter SlNRT1.5 in tomato plants, whose homolog in Arabidopsis, AtNRT1.5, contributed to xylem K<sup>+</sup> load. By using heterologous expression of SlNRT1.5 in Xenopus oocytes and a <em>slnrt1.5</em> knock-out mutant, we have gained insights into its role in shoot K<sup>+</sup> nutrition. Expression of SlNRT1.5 in Xenopus oocytes resulted in K<sup>+</sup> efflux, similar to that mediated by AtNRT1.5, which could indicate that SlNRT1.5 operates as a K<sup>+</sup> transport system. Plants lacking <em>slnrt1.5</em> accumulated less K<sup>+</sup> in shoots than WT plants under low external pH (4.5), and low supply of K<sup>+</sup> (0.05 mM) and N (0.5 mM). Interestingly, <em>slnrt1.5</em> plants accumulated less Na<sup>+</sup> and Cl<sup>-</sup> in shoots than WT plants. Further analyses on <em>slskor slnrt1.5</em> double mutant plants revealed an overlapping role of SlSKOR and SlNRT1.5 in shoot K<sup>+</sup> accumulation. Double mutants showed a 40 % decrease in shoot K<sup>+</sup> content in comparison with <em>slskor</em> and <em>slnrt1.5</em> single mutants. Altogether, this study showed that SlNRT1.5 and SlSKOR are major players in shoot K<sup>+</sup> accumulation in tomato plants.</div></div>\",\"PeriodicalId\":34736,\"journal\":{\"name\":\"Plant Stress\",\"volume\":\"14 \",\"pages\":\"Article 100689\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667064X24003427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24003427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
SlNRT1.5 transporter and the SlSKOR K+ channel jointly contribute to K+ translocation in tomato plants
Accumulation of K+ in shoots is largely dependent on K+ transport via the xylem and has important implications not only for K+ nutrition but also for stress tolerance. In tomato plants, the K+ channel SlSKOR contributed to K+ translocation but the decrease in the shoot K+ content in slskor mutants was only ∼15 %, indicating that additional K+ transport systems operated in the tomato stele. Here, we studied the physiological roles of the transporter SlNRT1.5 in tomato plants, whose homolog in Arabidopsis, AtNRT1.5, contributed to xylem K+ load. By using heterologous expression of SlNRT1.5 in Xenopus oocytes and a slnrt1.5 knock-out mutant, we have gained insights into its role in shoot K+ nutrition. Expression of SlNRT1.5 in Xenopus oocytes resulted in K+ efflux, similar to that mediated by AtNRT1.5, which could indicate that SlNRT1.5 operates as a K+ transport system. Plants lacking slnrt1.5 accumulated less K+ in shoots than WT plants under low external pH (4.5), and low supply of K+ (0.05 mM) and N (0.5 mM). Interestingly, slnrt1.5 plants accumulated less Na+ and Cl- in shoots than WT plants. Further analyses on slskor slnrt1.5 double mutant plants revealed an overlapping role of SlSKOR and SlNRT1.5 in shoot K+ accumulation. Double mutants showed a 40 % decrease in shoot K+ content in comparison with slskor and slnrt1.5 single mutants. Altogether, this study showed that SlNRT1.5 and SlSKOR are major players in shoot K+ accumulation in tomato plants.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.