Zhuoran Liu , Xingjun Wang , Qian Chen , Hongxia Li , Qinghua Guo , Guangsuo Yu , Haifeng Liu , Fuchen Wang
{"title":"单一煤炭颗粒的催化气化:实验和模拟研究","authors":"Zhuoran Liu , Xingjun Wang , Qian Chen , Hongxia Li , Qinghua Guo , Guangsuo Yu , Haifeng Liu , Fuchen Wang","doi":"10.1016/j.crcon.2024.100296","DOIUrl":null,"url":null,"abstract":"<div><div>The catalytic coal gasification technology has been widely researched and developed under the background of “Carbon peaking and carbon neutrality goals”. Currently, most of catalytic gasification experiments on coal char particles are analyzed by thermogravimetric analyzer (TGA). However, the gasification agent will be subject to diffusion resistance during the reaction because of the sample stacking, making the inherent reaction kinetics unclear. In this study, we investigated the catalytic gasification behavior of single-particle coal char using high temperature stage microscope (HTSM). With the diffusion resistance ruled out, the reaction conditions when using a HTSM are more similar to those inside a real industrial gasifier. Numerical models of the gasification reaction of single-particle coal char were further developed using the kinetic parameters obtained under HTSM. Three models were investigated, including regular spherical structured, irregular spherical structured and porous spherical structured models, representing different morphologies of coal char particles in the gasifier. The gasification characteristics of coal char particles under different K<sub>2</sub>CO<sub>3</sub> catalyst loadings and gasification temperatures were also studied. Compared with the activation energies data of coal char particles without catalyst, the activation energies of coal char particles loaded with 2.2 %, 4.4 %, 6.6 %, and 10.0 % catalysts were reduced by 110 kJ/mol, 116 kJ/mol, 121 kJ/mol, and 126 kJ/mol, respectively. The reaction surface area affects the temperature distribution. The temperature near the irregular spherical particle is about 20 K higher than the temperature near the regular spherical particle.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100296"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic gasification of a single coal char particle: An experimental and simulation study\",\"authors\":\"Zhuoran Liu , Xingjun Wang , Qian Chen , Hongxia Li , Qinghua Guo , Guangsuo Yu , Haifeng Liu , Fuchen Wang\",\"doi\":\"10.1016/j.crcon.2024.100296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The catalytic coal gasification technology has been widely researched and developed under the background of “Carbon peaking and carbon neutrality goals”. Currently, most of catalytic gasification experiments on coal char particles are analyzed by thermogravimetric analyzer (TGA). However, the gasification agent will be subject to diffusion resistance during the reaction because of the sample stacking, making the inherent reaction kinetics unclear. In this study, we investigated the catalytic gasification behavior of single-particle coal char using high temperature stage microscope (HTSM). With the diffusion resistance ruled out, the reaction conditions when using a HTSM are more similar to those inside a real industrial gasifier. Numerical models of the gasification reaction of single-particle coal char were further developed using the kinetic parameters obtained under HTSM. Three models were investigated, including regular spherical structured, irregular spherical structured and porous spherical structured models, representing different morphologies of coal char particles in the gasifier. The gasification characteristics of coal char particles under different K<sub>2</sub>CO<sub>3</sub> catalyst loadings and gasification temperatures were also studied. Compared with the activation energies data of coal char particles without catalyst, the activation energies of coal char particles loaded with 2.2 %, 4.4 %, 6.6 %, and 10.0 % catalysts were reduced by 110 kJ/mol, 116 kJ/mol, 121 kJ/mol, and 126 kJ/mol, respectively. The reaction surface area affects the temperature distribution. The temperature near the irregular spherical particle is about 20 K higher than the temperature near the regular spherical particle.</div></div>\",\"PeriodicalId\":52958,\"journal\":{\"name\":\"Carbon Resources Conversion\",\"volume\":\"8 1\",\"pages\":\"Article 100296\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Resources Conversion\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588913324000851\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000851","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Catalytic gasification of a single coal char particle: An experimental and simulation study
The catalytic coal gasification technology has been widely researched and developed under the background of “Carbon peaking and carbon neutrality goals”. Currently, most of catalytic gasification experiments on coal char particles are analyzed by thermogravimetric analyzer (TGA). However, the gasification agent will be subject to diffusion resistance during the reaction because of the sample stacking, making the inherent reaction kinetics unclear. In this study, we investigated the catalytic gasification behavior of single-particle coal char using high temperature stage microscope (HTSM). With the diffusion resistance ruled out, the reaction conditions when using a HTSM are more similar to those inside a real industrial gasifier. Numerical models of the gasification reaction of single-particle coal char were further developed using the kinetic parameters obtained under HTSM. Three models were investigated, including regular spherical structured, irregular spherical structured and porous spherical structured models, representing different morphologies of coal char particles in the gasifier. The gasification characteristics of coal char particles under different K2CO3 catalyst loadings and gasification temperatures were also studied. Compared with the activation energies data of coal char particles without catalyst, the activation energies of coal char particles loaded with 2.2 %, 4.4 %, 6.6 %, and 10.0 % catalysts were reduced by 110 kJ/mol, 116 kJ/mol, 121 kJ/mol, and 126 kJ/mol, respectively. The reaction surface area affects the temperature distribution. The temperature near the irregular spherical particle is about 20 K higher than the temperature near the regular spherical particle.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.