零和理论中指数猜想的改进边界

IF 0.6 3区 数学 Q3 MATHEMATICS
Andrew Pendleton
{"title":"零和理论中指数猜想的改进边界","authors":"Andrew Pendleton","doi":"10.1016/j.jnt.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>The Index Conjecture in zero-sum theory states that when <em>n</em> is coprime to 6 and <em>k</em> equals 4, every minimal zero-sum sequence of length <em>k</em> modulo <em>n</em> has index 1. While other values of <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> have been studied thoroughly in the last 30 years, it is only recently that the conjecture has been proven for <span><math><mi>n</mi><mo>&gt;</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>20</mn></mrow></msup></math></span>. In this paper, we prove that said upper bound can be reduced to <span><math><mn>4.6</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>13</mn></mrow></msup></math></span>, and lower under certain coprimality conditions. Further, we verify the conjecture for <span><math><mi>n</mi><mo>&lt;</mo><mn>1.8</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup></math></span> through the application of High Performance Computing (HPC).</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"268 ","pages":"Pages 124-141"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved bounds for the index conjecture in zero-sum theory\",\"authors\":\"Andrew Pendleton\",\"doi\":\"10.1016/j.jnt.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Index Conjecture in zero-sum theory states that when <em>n</em> is coprime to 6 and <em>k</em> equals 4, every minimal zero-sum sequence of length <em>k</em> modulo <em>n</em> has index 1. While other values of <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> have been studied thoroughly in the last 30 years, it is only recently that the conjecture has been proven for <span><math><mi>n</mi><mo>&gt;</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>20</mn></mrow></msup></math></span>. In this paper, we prove that said upper bound can be reduced to <span><math><mn>4.6</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>13</mn></mrow></msup></math></span>, and lower under certain coprimality conditions. Further, we verify the conjecture for <span><math><mi>n</mi><mo>&lt;</mo><mn>1.8</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup></math></span> through the application of High Performance Computing (HPC).</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"268 \",\"pages\":\"Pages 124-141\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24002117\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24002117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

零和理论中的索引猜想指出,当 n 是 6 的共素数且 k 等于 4 时,长度为 k modulo n 的每个最小零和序列的索引都是 1。在过去的 30 年里,人们对 (k,n) 的其他值进行了深入研究,但直到最近,人们才证明了 n>1020 的猜想。在本文中,我们证明了上述上限可以降到 4.6⋅1013 ,在某些共性条件下还可以降到更低。此外,我们还通过应用高性能计算(HPC)验证了 n<1.8⋅106 的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved bounds for the index conjecture in zero-sum theory
The Index Conjecture in zero-sum theory states that when n is coprime to 6 and k equals 4, every minimal zero-sum sequence of length k modulo n has index 1. While other values of (k,n) have been studied thoroughly in the last 30 years, it is only recently that the conjecture has been proven for n>1020. In this paper, we prove that said upper bound can be reduced to 4.61013, and lower under certain coprimality conditions. Further, we verify the conjecture for n<1.8106 through the application of High Performance Computing (HPC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信