{"title":"零和理论中指数猜想的改进边界","authors":"Andrew Pendleton","doi":"10.1016/j.jnt.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>The Index Conjecture in zero-sum theory states that when <em>n</em> is coprime to 6 and <em>k</em> equals 4, every minimal zero-sum sequence of length <em>k</em> modulo <em>n</em> has index 1. While other values of <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> have been studied thoroughly in the last 30 years, it is only recently that the conjecture has been proven for <span><math><mi>n</mi><mo>></mo><msup><mrow><mn>10</mn></mrow><mrow><mn>20</mn></mrow></msup></math></span>. In this paper, we prove that said upper bound can be reduced to <span><math><mn>4.6</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>13</mn></mrow></msup></math></span>, and lower under certain coprimality conditions. Further, we verify the conjecture for <span><math><mi>n</mi><mo><</mo><mn>1.8</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup></math></span> through the application of High Performance Computing (HPC).</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"268 ","pages":"Pages 124-141"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved bounds for the index conjecture in zero-sum theory\",\"authors\":\"Andrew Pendleton\",\"doi\":\"10.1016/j.jnt.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Index Conjecture in zero-sum theory states that when <em>n</em> is coprime to 6 and <em>k</em> equals 4, every minimal zero-sum sequence of length <em>k</em> modulo <em>n</em> has index 1. While other values of <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> have been studied thoroughly in the last 30 years, it is only recently that the conjecture has been proven for <span><math><mi>n</mi><mo>></mo><msup><mrow><mn>10</mn></mrow><mrow><mn>20</mn></mrow></msup></math></span>. In this paper, we prove that said upper bound can be reduced to <span><math><mn>4.6</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>13</mn></mrow></msup></math></span>, and lower under certain coprimality conditions. Further, we verify the conjecture for <span><math><mi>n</mi><mo><</mo><mn>1.8</mn><mo>⋅</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup></math></span> through the application of High Performance Computing (HPC).</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"268 \",\"pages\":\"Pages 124-141\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24002117\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24002117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
零和理论中的索引猜想指出,当 n 是 6 的共素数且 k 等于 4 时,长度为 k modulo n 的每个最小零和序列的索引都是 1。在过去的 30 年里,人们对 (k,n) 的其他值进行了深入研究,但直到最近,人们才证明了 n>1020 的猜想。在本文中,我们证明了上述上限可以降到 4.6⋅1013 ,在某些共性条件下还可以降到更低。此外,我们还通过应用高性能计算(HPC)验证了 n<1.8⋅106 的猜想。
Improved bounds for the index conjecture in zero-sum theory
The Index Conjecture in zero-sum theory states that when n is coprime to 6 and k equals 4, every minimal zero-sum sequence of length k modulo n has index 1. While other values of have been studied thoroughly in the last 30 years, it is only recently that the conjecture has been proven for . In this paper, we prove that said upper bound can be reduced to , and lower under certain coprimality conditions. Further, we verify the conjecture for through the application of High Performance Computing (HPC).
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.