矢量值西格尔-庞加莱数列族的构造与非消失

IF 0.6 3区 数学 Q3 MATHEMATICS
Sonja Žunar
{"title":"矢量值西格尔-庞加莱数列族的构造与非消失","authors":"Sonja Žunar","doi":"10.1016/j.jnt.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Using Poincaré series of <em>K</em>-finite matrix coefficients of integrable antiholomorphic discrete series representations of <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, we construct a spanning set for the space <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> of Siegel cusp forms of weight <em>ρ</em> for Γ, where <em>ρ</em> is an irreducible polynomial representation of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> of highest weight <span><math><mi>ω</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mo>…</mo><mo>≥</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>&gt;</mo><mn>2</mn><mi>n</mi></math></span>, and Γ is a discrete subgroup of <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> commensurable with <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>. Moreover, using a variant of Muić's integral non-vanishing criterion for Poincaré series on unimodular locally compact Hausdorff groups, we prove a result on the non-vanishing of constructed Siegel Poincaré series.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"268 ","pages":"Pages 95-123"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and non-vanishing of a family of vector-valued Siegel Poincaré series\",\"authors\":\"Sonja Žunar\",\"doi\":\"10.1016/j.jnt.2024.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using Poincaré series of <em>K</em>-finite matrix coefficients of integrable antiholomorphic discrete series representations of <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, we construct a spanning set for the space <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> of Siegel cusp forms of weight <em>ρ</em> for Γ, where <em>ρ</em> is an irreducible polynomial representation of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> of highest weight <span><math><mi>ω</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mo>…</mo><mo>≥</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>&gt;</mo><mn>2</mn><mi>n</mi></math></span>, and Γ is a discrete subgroup of <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> commensurable with <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>Z</mi><mo>)</mo></math></span>. Moreover, using a variant of Muić's integral non-vanishing criterion for Poincaré series on unimodular locally compact Hausdorff groups, we prove a result on the non-vanishing of constructed Siegel Poincaré series.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"268 \",\"pages\":\"Pages 95-123\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24002142\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24002142","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用 Sp2n(R)的可积分反同构离散序列表示的 K-无限矩阵系数的 Poincaré 序列,我们为权重 ρ 为 Γ 的西格尔尖顶形式空间 Sρ(Γ)构建了一个跨集,其中 ρ 是 GLn(C)的最高权重 ω∈Zn 的不可还原多项式表示,ω1≥...≥ωn>2n,而 Γ 是 Sp2n(R)的一个离散子群,与 Sp2n(Z) 可通约。此外,我们利用梅奇关于单模态局部紧凑 Hausdorff 群上波函数数列的积分不消失准则的一个变体,证明了关于构造西格尔波函数数列不消失的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction and non-vanishing of a family of vector-valued Siegel Poincaré series
Using Poincaré series of K-finite matrix coefficients of integrable antiholomorphic discrete series representations of Sp2n(R), we construct a spanning set for the space Sρ(Γ) of Siegel cusp forms of weight ρ for Γ, where ρ is an irreducible polynomial representation of GLn(C) of highest weight ωZn with ω1ωn>2n, and Γ is a discrete subgroup of Sp2n(R) commensurable with Sp2n(Z). Moreover, using a variant of Muić's integral non-vanishing criterion for Poincaré series on unimodular locally compact Hausdorff groups, we prove a result on the non-vanishing of constructed Siegel Poincaré series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信