{"title":"高速螺旋槽气体润滑端面密封件热变形传热模型","authors":"Chunhong Ma , Shaoxian Bai","doi":"10.1016/j.triboint.2024.110408","DOIUrl":null,"url":null,"abstract":"<div><div>The thermal distortions of seal face caused by heat transfer directly affect the stability of seal operation. Here, a heat transfer analysis model of spiral groove gas face seal is established taking account of gas compressibility and choked flow effect. Then, a thermoelastohydrodynamic lubrication (TEHL) analysis is carried out based on the proposed heat transfer model, frictional heat flux, surface conduction heat flux, and film adsorption heat flux are calculated, and face distortions are also analyzed under different operating parameters including rotational speed, seal temperature and seal pressure. It is shown that, the adsorption heat induced by gas expansion makes the film cooling, which often leads complex temperature distributions and plays an important and non-ignored role in thermal distortions. For the spiral groove face seal, the increase of seal pressure and rotational speed makes the adsorption heat increase significantly due to pumping effect of grooves. The more important is that the thermal distortions may be controlled by changing seal width. Here, for the spiral groove face seal, the clearance can transfer divergent to convergent with increasing seal width from 5 mm to 13.1 mm. This provides a potential way for distortion control in gas face seal design.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"203 ","pages":"Article 110408"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A heat transfer model for thermal distortions in high speed spiral groove gas lubricated face seals\",\"authors\":\"Chunhong Ma , Shaoxian Bai\",\"doi\":\"10.1016/j.triboint.2024.110408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The thermal distortions of seal face caused by heat transfer directly affect the stability of seal operation. Here, a heat transfer analysis model of spiral groove gas face seal is established taking account of gas compressibility and choked flow effect. Then, a thermoelastohydrodynamic lubrication (TEHL) analysis is carried out based on the proposed heat transfer model, frictional heat flux, surface conduction heat flux, and film adsorption heat flux are calculated, and face distortions are also analyzed under different operating parameters including rotational speed, seal temperature and seal pressure. It is shown that, the adsorption heat induced by gas expansion makes the film cooling, which often leads complex temperature distributions and plays an important and non-ignored role in thermal distortions. For the spiral groove face seal, the increase of seal pressure and rotational speed makes the adsorption heat increase significantly due to pumping effect of grooves. The more important is that the thermal distortions may be controlled by changing seal width. Here, for the spiral groove face seal, the clearance can transfer divergent to convergent with increasing seal width from 5 mm to 13.1 mm. This provides a potential way for distortion control in gas face seal design.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"203 \",\"pages\":\"Article 110408\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X24011605\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24011605","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A heat transfer model for thermal distortions in high speed spiral groove gas lubricated face seals
The thermal distortions of seal face caused by heat transfer directly affect the stability of seal operation. Here, a heat transfer analysis model of spiral groove gas face seal is established taking account of gas compressibility and choked flow effect. Then, a thermoelastohydrodynamic lubrication (TEHL) analysis is carried out based on the proposed heat transfer model, frictional heat flux, surface conduction heat flux, and film adsorption heat flux are calculated, and face distortions are also analyzed under different operating parameters including rotational speed, seal temperature and seal pressure. It is shown that, the adsorption heat induced by gas expansion makes the film cooling, which often leads complex temperature distributions and plays an important and non-ignored role in thermal distortions. For the spiral groove face seal, the increase of seal pressure and rotational speed makes the adsorption heat increase significantly due to pumping effect of grooves. The more important is that the thermal distortions may be controlled by changing seal width. Here, for the spiral groove face seal, the clearance can transfer divergent to convergent with increasing seal width from 5 mm to 13.1 mm. This provides a potential way for distortion control in gas face seal design.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.