深度学习多层随机智能计算用于分析指数膨胀圆柱体附近卡诺纳米流体的不规则热源

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Zahoor Shah , Nafisa A. Albasheir , Muhammad Asif Zahoor Raja , Mohammed M.A. Almazah , Fathia Moh. Al Samman , Muhammad Talha , Attika Jamil , M. Waqas
{"title":"深度学习多层随机智能计算用于分析指数膨胀圆柱体附近卡诺纳米流体的不规则热源","authors":"Zahoor Shah ,&nbsp;Nafisa A. Albasheir ,&nbsp;Muhammad Asif Zahoor Raja ,&nbsp;Mohammed M.A. Almazah ,&nbsp;Fathia Moh. Al Samman ,&nbsp;Muhammad Talha ,&nbsp;Attika Jamil ,&nbsp;M. Waqas","doi":"10.1016/j.triboint.2024.110389","DOIUrl":null,"url":null,"abstract":"<div><div>In pattern recognition, data analysis, and decision-making, it is obvious that there are currently artificial intelligence (AI) techniques being applied and are already impacting the research in various fields of study. This research investigates the numerical evaluation of the irregular heat source by capitalizing the knacks of AI based technique multilayer predictive analysis combined with Levenberg Marquardt Algorithm abbreviated as MLPA-LMA on Carreau Nano-fluid flowing through Exponential Expanding Cylinder. The Two-dimensional axisymmetric incompressible Carreau Nanofluid Flow Model (CNFFM) over a nonlinear stretched cylinder of radius <em>R</em> is assumed. To apply the proposed technique, the dataset with varying values of Weissenberg parameter (We), Embedded constant parameters (<span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>A</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> &amp; <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>), Stretching index (<em>m</em>), Small perturbation number (<span><math><mi>ε</mi></math></span>) and Prandtl number (<em>Pr</em>) for the CNFFM is created. The strengths of the AI based MLPA-LMA are then applied in evaluating the dataset of CNFFM to calculate the estimated solutions. The achieved and impactful values of convergence are between the ranges of E-12 to E-16 all through the eight scenarios on CNFFM. The rationale of implementing the proposed MLPA-LMA methodology is substantiated by showing all eight graphical scenarios with mean square error (MSE), error histogram, time series, regression chart and other error-efficiency diagrams, such as error autocorrelation and input error cross correlation plots. The results obtained using the AI based MLPA-LMA technique corroborate the authenticity of the proposed technique for fairly and accurately solving the CNFFM.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"203 ","pages":"Article 110389"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning multilayer stochastic intelligent computing for the analysis of irregular heat source of Carreau nanofluid within the vicinity of an exponentially expanding cylinder\",\"authors\":\"Zahoor Shah ,&nbsp;Nafisa A. Albasheir ,&nbsp;Muhammad Asif Zahoor Raja ,&nbsp;Mohammed M.A. Almazah ,&nbsp;Fathia Moh. Al Samman ,&nbsp;Muhammad Talha ,&nbsp;Attika Jamil ,&nbsp;M. Waqas\",\"doi\":\"10.1016/j.triboint.2024.110389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In pattern recognition, data analysis, and decision-making, it is obvious that there are currently artificial intelligence (AI) techniques being applied and are already impacting the research in various fields of study. This research investigates the numerical evaluation of the irregular heat source by capitalizing the knacks of AI based technique multilayer predictive analysis combined with Levenberg Marquardt Algorithm abbreviated as MLPA-LMA on Carreau Nano-fluid flowing through Exponential Expanding Cylinder. The Two-dimensional axisymmetric incompressible Carreau Nanofluid Flow Model (CNFFM) over a nonlinear stretched cylinder of radius <em>R</em> is assumed. To apply the proposed technique, the dataset with varying values of Weissenberg parameter (We), Embedded constant parameters (<span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>A</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> &amp; <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>), Stretching index (<em>m</em>), Small perturbation number (<span><math><mi>ε</mi></math></span>) and Prandtl number (<em>Pr</em>) for the CNFFM is created. The strengths of the AI based MLPA-LMA are then applied in evaluating the dataset of CNFFM to calculate the estimated solutions. The achieved and impactful values of convergence are between the ranges of E-12 to E-16 all through the eight scenarios on CNFFM. The rationale of implementing the proposed MLPA-LMA methodology is substantiated by showing all eight graphical scenarios with mean square error (MSE), error histogram, time series, regression chart and other error-efficiency diagrams, such as error autocorrelation and input error cross correlation plots. The results obtained using the AI based MLPA-LMA technique corroborate the authenticity of the proposed technique for fairly and accurately solving the CNFFM.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"203 \",\"pages\":\"Article 110389\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X24011411\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24011411","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在模式识别、数据分析和决策过程中,人工智能(AI)技术的应用是显而易见的,并且已经对各个研究领域的研究产生了影响。本研究利用基于人工智能技术的多层预测分析与 Levenberg Marquardt 算法(缩写为 MLPA-LMA)对流经膨胀圆筒的 Carreau 纳米流体进行不规则热源的数值评估。假设在半径为 R 的非线性拉伸圆柱体上存在二维轴对称不可压缩的 Carreau 纳米流体流动模型(CNFFM)。为了应用所提出的技术,创建了一个数据集,其中包含不同值的魏森伯格参数(We)、嵌入常数参数(A1,A2,A3 & A4)、拉伸指数(m)、小扰动数(ε)和普朗特数(Pr)。然后将基于人工智能的 MLPA-LMA 的优势应用于评估 CNFFM 数据集,以计算估计解。在 CNFFM 的八个方案中,收敛性达到了 E-12 到 E-16 之间的范围,并产生了影响。通过均方误差 (MSE)、误差柱状图、时间序列图、回归图和其他误差效率图(如误差自相关图和输入误差交叉相关图)显示所有八个图形方案,证明了实施所建议的 MLPA-LMA 方法的合理性。使用基于人工智能的 MLPA-LMA 技术获得的结果证实了所提出的技术在公平、准确地解决 CNFFM 方面的真实性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning multilayer stochastic intelligent computing for the analysis of irregular heat source of Carreau nanofluid within the vicinity of an exponentially expanding cylinder
In pattern recognition, data analysis, and decision-making, it is obvious that there are currently artificial intelligence (AI) techniques being applied and are already impacting the research in various fields of study. This research investigates the numerical evaluation of the irregular heat source by capitalizing the knacks of AI based technique multilayer predictive analysis combined with Levenberg Marquardt Algorithm abbreviated as MLPA-LMA on Carreau Nano-fluid flowing through Exponential Expanding Cylinder. The Two-dimensional axisymmetric incompressible Carreau Nanofluid Flow Model (CNFFM) over a nonlinear stretched cylinder of radius R is assumed. To apply the proposed technique, the dataset with varying values of Weissenberg parameter (We), Embedded constant parameters (A1,A2,A3 & A4), Stretching index (m), Small perturbation number (ε) and Prandtl number (Pr) for the CNFFM is created. The strengths of the AI based MLPA-LMA are then applied in evaluating the dataset of CNFFM to calculate the estimated solutions. The achieved and impactful values of convergence are between the ranges of E-12 to E-16 all through the eight scenarios on CNFFM. The rationale of implementing the proposed MLPA-LMA methodology is substantiated by showing all eight graphical scenarios with mean square error (MSE), error histogram, time series, regression chart and other error-efficiency diagrams, such as error autocorrelation and input error cross correlation plots. The results obtained using the AI based MLPA-LMA technique corroborate the authenticity of the proposed technique for fairly and accurately solving the CNFFM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信