{"title":"用于光电应用的掺杂 Cr2O3/C3N4 的 PVA 聚合物膜的合成","authors":"Khulaif Alshammari, Alhulw H. Alshammari","doi":"10.1016/j.polymertesting.2024.108651","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports the synthesis and characterization of Cr₂O₃/g-C₃N₄ doped PVA nanocomposite membranes using a solution casting method for potential optoelectronic applications. The successful incorporation of Cr₂O₃ and g-C₃N₄ into the PVA matrix was confirmed through various analytical techniques, comprising FTIR, XRD, SEM, EDX, and XPS. The addition of Cr₂O₃/g-C₃N₄ resulted in enhanced thermal stability, as demonstrated by an increase in decomposition temperature by 25–38 °C. Optical analysis revealed a reduction in both direct and indirect band gaps, from 5.41 eV to 4.85 eV and 5.18 eV–4.65 eV, respectively, indicating modifications in the electronic structure of the composite. This enhancement in optical and thermal properties can be linked to the robust interfacial interactions between the nanofillers and the PVA matrix. The novelty of this research lies in the synergistic effect of Cr₂O₃ and g-C₃N₄, which not only improves the composite's stability and optical properties but also provides a pathway for the development of advanced materials with tunable electronic characteristics for optoelectronic devices. The results of this study contribute to the growing need for environmentally friendly, high-performance materials that can be utilized in a variety of implementations, such as sensors and flexible electronics, thereby having a positive impact on technology development and societal progress.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"141 ","pages":"Article 108651"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Cr2O3/C3N4 doped PVA polymer membranes for optoelectronic applications\",\"authors\":\"Khulaif Alshammari, Alhulw H. Alshammari\",\"doi\":\"10.1016/j.polymertesting.2024.108651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study reports the synthesis and characterization of Cr₂O₃/g-C₃N₄ doped PVA nanocomposite membranes using a solution casting method for potential optoelectronic applications. The successful incorporation of Cr₂O₃ and g-C₃N₄ into the PVA matrix was confirmed through various analytical techniques, comprising FTIR, XRD, SEM, EDX, and XPS. The addition of Cr₂O₃/g-C₃N₄ resulted in enhanced thermal stability, as demonstrated by an increase in decomposition temperature by 25–38 °C. Optical analysis revealed a reduction in both direct and indirect band gaps, from 5.41 eV to 4.85 eV and 5.18 eV–4.65 eV, respectively, indicating modifications in the electronic structure of the composite. This enhancement in optical and thermal properties can be linked to the robust interfacial interactions between the nanofillers and the PVA matrix. The novelty of this research lies in the synergistic effect of Cr₂O₃ and g-C₃N₄, which not only improves the composite's stability and optical properties but also provides a pathway for the development of advanced materials with tunable electronic characteristics for optoelectronic devices. The results of this study contribute to the growing need for environmentally friendly, high-performance materials that can be utilized in a variety of implementations, such as sensors and flexible electronics, thereby having a positive impact on technology development and societal progress.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"141 \",\"pages\":\"Article 108651\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824003283\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824003283","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Synthesis of Cr2O3/C3N4 doped PVA polymer membranes for optoelectronic applications
This study reports the synthesis and characterization of Cr₂O₃/g-C₃N₄ doped PVA nanocomposite membranes using a solution casting method for potential optoelectronic applications. The successful incorporation of Cr₂O₃ and g-C₃N₄ into the PVA matrix was confirmed through various analytical techniques, comprising FTIR, XRD, SEM, EDX, and XPS. The addition of Cr₂O₃/g-C₃N₄ resulted in enhanced thermal stability, as demonstrated by an increase in decomposition temperature by 25–38 °C. Optical analysis revealed a reduction in both direct and indirect band gaps, from 5.41 eV to 4.85 eV and 5.18 eV–4.65 eV, respectively, indicating modifications in the electronic structure of the composite. This enhancement in optical and thermal properties can be linked to the robust interfacial interactions between the nanofillers and the PVA matrix. The novelty of this research lies in the synergistic effect of Cr₂O₃ and g-C₃N₄, which not only improves the composite's stability and optical properties but also provides a pathway for the development of advanced materials with tunable electronic characteristics for optoelectronic devices. The results of this study contribute to the growing need for environmentally friendly, high-performance materials that can be utilized in a variety of implementations, such as sensors and flexible electronics, thereby having a positive impact on technology development and societal progress.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.