Heitor C. dos Santos, Beatriz E. Stutz, André F. Young
{"title":"从甘油中工业化生产三醋精的工艺模拟和经济评估:比较醋酸和醋酸酐作为可能的试剂","authors":"Heitor C. dos Santos, Beatriz E. Stutz, André F. Young","doi":"10.1016/j.renene.2024.121943","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of this work was to simulate, in Aspen HYSYS® v12.1, the process of obtaining triacetin from glycerol through three chemical routes: via acetic acid (Route 1), acetic anhydride (Route 2), and a combination of acetic acid and acetic anhydride in two separate reactors (Route 3). Additionally and as a novelty, it was investigated the technical and economic viability of a multipurpose plant to this end. It was verified that Route 1 resulted in the best triacetin breakeven prices, even though it would still not be competitive in the considered economic context. On the other hand, Route 2 presented the worst performance due to low conversion (11 %) and higher price of acetic anhydride. The combined route resulted in intermediate breakeven prices for triacetin, despite achieving the highest conversion (79 %) and highest final product purity (96 %). Yield/selectivity and the separation steps were identified as the main bottlenecks in these processes, with reactors and distillation columns accounting for more than 95 % of the equipment costs. The multipurpose plant proved technically possible, and it can be economically interesting depending on the market prices for acetic acid and acetic anhydride.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121943"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process simulation and economic evaluation of the industrial production of triacetin from glycerol: Comparing acetic acid and acetic anhydride as possible reagents\",\"authors\":\"Heitor C. dos Santos, Beatriz E. Stutz, André F. Young\",\"doi\":\"10.1016/j.renene.2024.121943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The objective of this work was to simulate, in Aspen HYSYS® v12.1, the process of obtaining triacetin from glycerol through three chemical routes: via acetic acid (Route 1), acetic anhydride (Route 2), and a combination of acetic acid and acetic anhydride in two separate reactors (Route 3). Additionally and as a novelty, it was investigated the technical and economic viability of a multipurpose plant to this end. It was verified that Route 1 resulted in the best triacetin breakeven prices, even though it would still not be competitive in the considered economic context. On the other hand, Route 2 presented the worst performance due to low conversion (11 %) and higher price of acetic anhydride. The combined route resulted in intermediate breakeven prices for triacetin, despite achieving the highest conversion (79 %) and highest final product purity (96 %). Yield/selectivity and the separation steps were identified as the main bottlenecks in these processes, with reactors and distillation columns accounting for more than 95 % of the equipment costs. The multipurpose plant proved technically possible, and it can be economically interesting depending on the market prices for acetic acid and acetic anhydride.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"237 \",\"pages\":\"Article 121943\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148124020111\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124020111","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Process simulation and economic evaluation of the industrial production of triacetin from glycerol: Comparing acetic acid and acetic anhydride as possible reagents
The objective of this work was to simulate, in Aspen HYSYS® v12.1, the process of obtaining triacetin from glycerol through three chemical routes: via acetic acid (Route 1), acetic anhydride (Route 2), and a combination of acetic acid and acetic anhydride in two separate reactors (Route 3). Additionally and as a novelty, it was investigated the technical and economic viability of a multipurpose plant to this end. It was verified that Route 1 resulted in the best triacetin breakeven prices, even though it would still not be competitive in the considered economic context. On the other hand, Route 2 presented the worst performance due to low conversion (11 %) and higher price of acetic anhydride. The combined route resulted in intermediate breakeven prices for triacetin, despite achieving the highest conversion (79 %) and highest final product purity (96 %). Yield/selectivity and the separation steps were identified as the main bottlenecks in these processes, with reactors and distillation columns accounting for more than 95 % of the equipment costs. The multipurpose plant proved technically possible, and it can be economically interesting depending on the market prices for acetic acid and acetic anhydride.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.