{"title":"等温线模式对熔池源细胞界面形态的影响","authors":"Saurabh Tiwari, Supriyo Ghosh","doi":"10.1016/j.icheatmasstransfer.2024.108344","DOIUrl":null,"url":null,"abstract":"<div><div>Spatiotemporal variation of the thermal gradient in the melt pool inherited from different heat input patterns or other non-equilibrium transient effects during additive manufacturing can significantly affect the resulting subgrain microstructure evolution. To examine the impact of this variation, we approximate the thermal gradient by various isotherm patterns that move with constant velocity following directional solidification. We report the first three-dimensional phase-field simulations to investigate the effects of isotherm patterns on the cellular structures typically observed in solidified melt pools. Results indicate that small variations in the isotherm can considerably impact the microstructural features. We use appropriate statistical characterizations of the solid fraction, solid percolation, and solute partitioning behavior to demonstrate the influence of isotherm patterns on the dendritic structures and semisolid mushy zones. Consistent with experimental observations, we find that non-planar isotherms produce finer cells and reduced microsegregation compared to planar isotherms. Also, we note that a tilt of the isotherm leads to a tilted state of the resulting cellular arrays. Our findings will help in understanding the qualitative aspects of the influence of temperature gradient patterns on the evolution of solidification morphologies, mushy zones, and secondary phases, which are crucial for the macroscopic description of the solidified material.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"160 ","pages":"Article 108344"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of isotherm patterns on cellular interface morphologies of melt pool origin\",\"authors\":\"Saurabh Tiwari, Supriyo Ghosh\",\"doi\":\"10.1016/j.icheatmasstransfer.2024.108344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spatiotemporal variation of the thermal gradient in the melt pool inherited from different heat input patterns or other non-equilibrium transient effects during additive manufacturing can significantly affect the resulting subgrain microstructure evolution. To examine the impact of this variation, we approximate the thermal gradient by various isotherm patterns that move with constant velocity following directional solidification. We report the first three-dimensional phase-field simulations to investigate the effects of isotherm patterns on the cellular structures typically observed in solidified melt pools. Results indicate that small variations in the isotherm can considerably impact the microstructural features. We use appropriate statistical characterizations of the solid fraction, solid percolation, and solute partitioning behavior to demonstrate the influence of isotherm patterns on the dendritic structures and semisolid mushy zones. Consistent with experimental observations, we find that non-planar isotherms produce finer cells and reduced microsegregation compared to planar isotherms. Also, we note that a tilt of the isotherm leads to a tilted state of the resulting cellular arrays. Our findings will help in understanding the qualitative aspects of the influence of temperature gradient patterns on the evolution of solidification morphologies, mushy zones, and secondary phases, which are crucial for the macroscopic description of the solidified material.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"160 \",\"pages\":\"Article 108344\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193324011060\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324011060","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Effects of isotherm patterns on cellular interface morphologies of melt pool origin
Spatiotemporal variation of the thermal gradient in the melt pool inherited from different heat input patterns or other non-equilibrium transient effects during additive manufacturing can significantly affect the resulting subgrain microstructure evolution. To examine the impact of this variation, we approximate the thermal gradient by various isotherm patterns that move with constant velocity following directional solidification. We report the first three-dimensional phase-field simulations to investigate the effects of isotherm patterns on the cellular structures typically observed in solidified melt pools. Results indicate that small variations in the isotherm can considerably impact the microstructural features. We use appropriate statistical characterizations of the solid fraction, solid percolation, and solute partitioning behavior to demonstrate the influence of isotherm patterns on the dendritic structures and semisolid mushy zones. Consistent with experimental observations, we find that non-planar isotherms produce finer cells and reduced microsegregation compared to planar isotherms. Also, we note that a tilt of the isotherm leads to a tilted state of the resulting cellular arrays. Our findings will help in understanding the qualitative aspects of the influence of temperature gradient patterns on the evolution of solidification morphologies, mushy zones, and secondary phases, which are crucial for the macroscopic description of the solidified material.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.