用混合分析和数值方法求解非线性克莱因-戈登方程和广义不确定性原理

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Narges Heidari , Marc de Montigny , Ali Ahmadi Azar , Thambiayya Sathiyaraj , Hassan Hassanabadi
{"title":"用混合分析和数值方法求解非线性克莱因-戈登方程和广义不确定性原理","authors":"Narges Heidari ,&nbsp;Marc de Montigny ,&nbsp;Ali Ahmadi Azar ,&nbsp;Thambiayya Sathiyaraj ,&nbsp;Hassan Hassanabadi","doi":"10.1016/j.nuclphysb.2024.116750","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the prediction of a minimal measurable length at Planck scale found in many candidate theories of quantum gravity, we examine the Klein-Gordon equation with a <span><math><mi>λ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> interaction and a symmetry-breaking term, in the presence of a generalized uncertainty principle associated with a minimal length. This allows us to assess the correction which underlying physical systems of scalar fields would undergo. Further, we solve the Euler-Lagrange equation by applying the <em>Hybrid Analytical and Numerical</em> (or HAN, for short) method, an effective approach for solving a large variety of nonlinear ordinary and partial differential equations.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116750"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions of the nonlinear Klein-Gordon equation and the generalized uncertainty principle with the hybrid analytical and numerical method\",\"authors\":\"Narges Heidari ,&nbsp;Marc de Montigny ,&nbsp;Ali Ahmadi Azar ,&nbsp;Thambiayya Sathiyaraj ,&nbsp;Hassan Hassanabadi\",\"doi\":\"10.1016/j.nuclphysb.2024.116750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by the prediction of a minimal measurable length at Planck scale found in many candidate theories of quantum gravity, we examine the Klein-Gordon equation with a <span><math><mi>λ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> interaction and a symmetry-breaking term, in the presence of a generalized uncertainty principle associated with a minimal length. This allows us to assess the correction which underlying physical systems of scalar fields would undergo. Further, we solve the Euler-Lagrange equation by applying the <em>Hybrid Analytical and Numerical</em> (or HAN, for short) method, an effective approach for solving a large variety of nonlinear ordinary and partial differential equations.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1009 \",\"pages\":\"Article 116750\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S055032132400316X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S055032132400316X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

许多量子引力候选理论都预言了普朗克尺度下的最小可测长度,受此激励,我们研究了具有λϕ4相互作用和对称破缺项的克莱因-戈登方程,以及与最小长度相关的广义不确定性原理。这样,我们就可以评估标量场的基本物理系统将经历的修正。此外,我们还采用了混合分析和数值方法(简称 HAN)来求解欧拉-拉格朗日方程,这是一种求解大量非线性常微分方程和偏微分方程的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions of the nonlinear Klein-Gordon equation and the generalized uncertainty principle with the hybrid analytical and numerical method
Motivated by the prediction of a minimal measurable length at Planck scale found in many candidate theories of quantum gravity, we examine the Klein-Gordon equation with a λϕ4 interaction and a symmetry-breaking term, in the presence of a generalized uncertainty principle associated with a minimal length. This allows us to assess the correction which underlying physical systems of scalar fields would undergo. Further, we solve the Euler-Lagrange equation by applying the Hybrid Analytical and Numerical (or HAN, for short) method, an effective approach for solving a large variety of nonlinear ordinary and partial differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信