Wei Li , Guiqing Xie , Xinhao Li , Yunhao Ji , Kui Jiang
{"title":"华南江南造山带兴凤山矿床的地质和地球同步学:对与侵入有关的金-钨矿化的影响","authors":"Wei Li , Guiqing Xie , Xinhao Li , Yunhao Ji , Kui Jiang","doi":"10.1016/j.oregeorev.2024.106365","DOIUrl":null,"url":null,"abstract":"<div><div>The Xingfengshan is a slate-hosted Au–W deposit in the central part of the Jiangnan orogenic belt, South China. It comprises stratiform skarns and sheeted quartz veins, and both two types of mineralization have W and Au metal association. In this study, systematic geological investigation, together with TESCAN Integrated Mineral Analyzer (TIMA), and biotite <sup>40</sup>Ar/<sup>39</sup>Ar analyses were performed to determine the geological features and mineralization age. Formation of skarn stage (Stage 1) is represented by three substages: (I) prograde skarn, (II) retrograde skarn, and (III) quartz–sulfide. Scheelite and minor native gold formed during substage II and III, respectively. TIMA results confirm the coexistence of skarn minerals such as garnet, pyroxene, actinolite, and biotite, and scheelite. Sheeted Au–W quartz veins (Stage 2) crosscutting skarns contain auriferous arsenopyrite, scheelite, pyrrhotite, quartz, and display coexistence of Au (arsenopyrite), W (scheelite), and biotite. Post-ore barren quartz veins (Stage 3) are mainly composed of quartz, muscovite and tourmaline. <sup>40</sup>Ar/<sup>39</sup>Ar dating results of biotite from retrograde skarn and sheeted veins constraining the formation ages are 215.0 ± 1.7 Ma and 211.9 ± 1.7 to 209.8 ± 2.1 Ma, respectively. These ages are broadly contemporaneous with the surrounding granitoid intrusion (218.7 ± 1.5 to 204.5 ± 2.8 Ma). It is likely that mineralizing fluids responsible for Au–W mineralization are of magmatic in origin. Considering the temporal and spatial association of the widespread Late Triassic magmatism and Au–W mineralization in the central Jiangnan orogenic belt, an intrusion-related Au system could be established for genesis of the Xingfengshan Au–W deposit.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"175 ","pages":"Article 106365"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geology and geochronology of the Xingfengshan deposit, Jiangnan orogenic belt, South China: Implication for intrusion-related Au–W mineralization\",\"authors\":\"Wei Li , Guiqing Xie , Xinhao Li , Yunhao Ji , Kui Jiang\",\"doi\":\"10.1016/j.oregeorev.2024.106365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Xingfengshan is a slate-hosted Au–W deposit in the central part of the Jiangnan orogenic belt, South China. It comprises stratiform skarns and sheeted quartz veins, and both two types of mineralization have W and Au metal association. In this study, systematic geological investigation, together with TESCAN Integrated Mineral Analyzer (TIMA), and biotite <sup>40</sup>Ar/<sup>39</sup>Ar analyses were performed to determine the geological features and mineralization age. Formation of skarn stage (Stage 1) is represented by three substages: (I) prograde skarn, (II) retrograde skarn, and (III) quartz–sulfide. Scheelite and minor native gold formed during substage II and III, respectively. TIMA results confirm the coexistence of skarn minerals such as garnet, pyroxene, actinolite, and biotite, and scheelite. Sheeted Au–W quartz veins (Stage 2) crosscutting skarns contain auriferous arsenopyrite, scheelite, pyrrhotite, quartz, and display coexistence of Au (arsenopyrite), W (scheelite), and biotite. Post-ore barren quartz veins (Stage 3) are mainly composed of quartz, muscovite and tourmaline. <sup>40</sup>Ar/<sup>39</sup>Ar dating results of biotite from retrograde skarn and sheeted veins constraining the formation ages are 215.0 ± 1.7 Ma and 211.9 ± 1.7 to 209.8 ± 2.1 Ma, respectively. These ages are broadly contemporaneous with the surrounding granitoid intrusion (218.7 ± 1.5 to 204.5 ± 2.8 Ma). It is likely that mineralizing fluids responsible for Au–W mineralization are of magmatic in origin. Considering the temporal and spatial association of the widespread Late Triassic magmatism and Au–W mineralization in the central Jiangnan orogenic belt, an intrusion-related Au system could be established for genesis of the Xingfengshan Au–W deposit.</div></div>\",\"PeriodicalId\":19644,\"journal\":{\"name\":\"Ore Geology Reviews\",\"volume\":\"175 \",\"pages\":\"Article 106365\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ore Geology Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169136824004980\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136824004980","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Geology and geochronology of the Xingfengshan deposit, Jiangnan orogenic belt, South China: Implication for intrusion-related Au–W mineralization
The Xingfengshan is a slate-hosted Au–W deposit in the central part of the Jiangnan orogenic belt, South China. It comprises stratiform skarns and sheeted quartz veins, and both two types of mineralization have W and Au metal association. In this study, systematic geological investigation, together with TESCAN Integrated Mineral Analyzer (TIMA), and biotite 40Ar/39Ar analyses were performed to determine the geological features and mineralization age. Formation of skarn stage (Stage 1) is represented by three substages: (I) prograde skarn, (II) retrograde skarn, and (III) quartz–sulfide. Scheelite and minor native gold formed during substage II and III, respectively. TIMA results confirm the coexistence of skarn minerals such as garnet, pyroxene, actinolite, and biotite, and scheelite. Sheeted Au–W quartz veins (Stage 2) crosscutting skarns contain auriferous arsenopyrite, scheelite, pyrrhotite, quartz, and display coexistence of Au (arsenopyrite), W (scheelite), and biotite. Post-ore barren quartz veins (Stage 3) are mainly composed of quartz, muscovite and tourmaline. 40Ar/39Ar dating results of biotite from retrograde skarn and sheeted veins constraining the formation ages are 215.0 ± 1.7 Ma and 211.9 ± 1.7 to 209.8 ± 2.1 Ma, respectively. These ages are broadly contemporaneous with the surrounding granitoid intrusion (218.7 ± 1.5 to 204.5 ± 2.8 Ma). It is likely that mineralizing fluids responsible for Au–W mineralization are of magmatic in origin. Considering the temporal and spatial association of the widespread Late Triassic magmatism and Au–W mineralization in the central Jiangnan orogenic belt, an intrusion-related Au system could be established for genesis of the Xingfengshan Au–W deposit.
期刊介绍:
Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.