{"title":"时变泊松-纳斯特-普朗克问题的无稳定器弱伽勒金方法及其最佳 L2 误差估计值","authors":"Wenjuan Li , Fuzheng Gao , Xiaoming He","doi":"10.1016/j.cnsns.2024.108449","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns a backward Euler stabilizer-free weak Galerkin finite element method (SFWG-FEM) for the time-dependent Poisson–Nernst–Planck (TD-PNP) problem. The scheme we propose utilizes spaces <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><msup><mrow><mrow><mo>[</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow><mo>]</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> to approximate the interior, edge, and discrete weak gradient spaces on each element <span><math><mi>K</mi></math></span> and edge <span><math><mrow><mi>e</mi><mo>⊂</mo><mi>∂</mi><mi>K</mi></mrow></math></span>, respectively. The proposed method is in a simple format similar to the regular finite element method, compatible with polygonal meshes, flexible in approximation function space, and unconditionally stable in time. Based on a rigorous analysis of a weak Galerkin Ritz projection error, which is derived by a dual problem, the superconvergence of the Ritz projection error estimates in energy norm results in optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error estimates. Several numerical experiments are conducted to demonstrate our theoretical findings, where Oseen iteration is utilized for the nonlinear coupling terms.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"141 ","pages":"Article 108449"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizer-free weak Galerkin method and its optimal L2 error estimates for the time-dependent Poisson—Nernst–Planck problem\",\"authors\":\"Wenjuan Li , Fuzheng Gao , Xiaoming He\",\"doi\":\"10.1016/j.cnsns.2024.108449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper concerns a backward Euler stabilizer-free weak Galerkin finite element method (SFWG-FEM) for the time-dependent Poisson–Nernst–Planck (TD-PNP) problem. The scheme we propose utilizes spaces <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><msup><mrow><mrow><mo>[</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow><mo>]</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> to approximate the interior, edge, and discrete weak gradient spaces on each element <span><math><mi>K</mi></math></span> and edge <span><math><mrow><mi>e</mi><mo>⊂</mo><mi>∂</mi><mi>K</mi></mrow></math></span>, respectively. The proposed method is in a simple format similar to the regular finite element method, compatible with polygonal meshes, flexible in approximation function space, and unconditionally stable in time. Based on a rigorous analysis of a weak Galerkin Ritz projection error, which is derived by a dual problem, the superconvergence of the Ritz projection error estimates in energy norm results in optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error estimates. Several numerical experiments are conducted to demonstrate our theoretical findings, where Oseen iteration is utilized for the nonlinear coupling terms.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"141 \",\"pages\":\"Article 108449\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424006348\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424006348","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stabilizer-free weak Galerkin method and its optimal L2 error estimates for the time-dependent Poisson—Nernst–Planck problem
This paper concerns a backward Euler stabilizer-free weak Galerkin finite element method (SFWG-FEM) for the time-dependent Poisson–Nernst–Planck (TD-PNP) problem. The scheme we propose utilizes spaces , , to approximate the interior, edge, and discrete weak gradient spaces on each element and edge , respectively. The proposed method is in a simple format similar to the regular finite element method, compatible with polygonal meshes, flexible in approximation function space, and unconditionally stable in time. Based on a rigorous analysis of a weak Galerkin Ritz projection error, which is derived by a dual problem, the superconvergence of the Ritz projection error estimates in energy norm results in optimal error estimates. Several numerical experiments are conducted to demonstrate our theoretical findings, where Oseen iteration is utilized for the nonlinear coupling terms.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.