时变泊松-纳斯特-普朗克问题的无稳定器弱伽勒金方法及其最佳 L2 误差估计值

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Wenjuan Li , Fuzheng Gao , Xiaoming He
{"title":"时变泊松-纳斯特-普朗克问题的无稳定器弱伽勒金方法及其最佳 L2 误差估计值","authors":"Wenjuan Li ,&nbsp;Fuzheng Gao ,&nbsp;Xiaoming He","doi":"10.1016/j.cnsns.2024.108449","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns a backward Euler stabilizer-free weak Galerkin finite element method (SFWG-FEM) for the time-dependent Poisson–Nernst–Planck (TD-PNP) problem. The scheme we propose utilizes spaces <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><msup><mrow><mrow><mo>[</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow><mo>]</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> to approximate the interior, edge, and discrete weak gradient spaces on each element <span><math><mi>K</mi></math></span> and edge <span><math><mrow><mi>e</mi><mo>⊂</mo><mi>∂</mi><mi>K</mi></mrow></math></span>, respectively. The proposed method is in a simple format similar to the regular finite element method, compatible with polygonal meshes, flexible in approximation function space, and unconditionally stable in time. Based on a rigorous analysis of a weak Galerkin Ritz projection error, which is derived by a dual problem, the superconvergence of the Ritz projection error estimates in energy norm results in optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error estimates. Several numerical experiments are conducted to demonstrate our theoretical findings, where Oseen iteration is utilized for the nonlinear coupling terms.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"141 ","pages":"Article 108449"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizer-free weak Galerkin method and its optimal L2 error estimates for the time-dependent Poisson—Nernst–Planck problem\",\"authors\":\"Wenjuan Li ,&nbsp;Fuzheng Gao ,&nbsp;Xiaoming He\",\"doi\":\"10.1016/j.cnsns.2024.108449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper concerns a backward Euler stabilizer-free weak Galerkin finite element method (SFWG-FEM) for the time-dependent Poisson–Nernst–Planck (TD-PNP) problem. The scheme we propose utilizes spaces <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><msup><mrow><mrow><mo>[</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow><mo>]</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> to approximate the interior, edge, and discrete weak gradient spaces on each element <span><math><mi>K</mi></math></span> and edge <span><math><mrow><mi>e</mi><mo>⊂</mo><mi>∂</mi><mi>K</mi></mrow></math></span>, respectively. The proposed method is in a simple format similar to the regular finite element method, compatible with polygonal meshes, flexible in approximation function space, and unconditionally stable in time. Based on a rigorous analysis of a weak Galerkin Ritz projection error, which is derived by a dual problem, the superconvergence of the Ritz projection error estimates in energy norm results in optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error estimates. Several numerical experiments are conducted to demonstrate our theoretical findings, where Oseen iteration is utilized for the nonlinear coupling terms.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"141 \",\"pages\":\"Article 108449\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424006348\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424006348","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及一种针对时变泊松-恩斯特-普朗克(TD-PNP)问题的后向欧拉无稳定器弱伽勒金有限元法(SFWG-FEM)。我们提出的方案利用空间 Pk(K)、Pk(e)、[Pj(K)]2 分别逼近每个元素 K 和边 e⊂∂K 上的内部、边和离散弱梯度空间。所提出的方法格式简单,类似于常规有限元方法,与多边形网格兼容,近似函数空间灵活,时间上无条件稳定。基于对一个弱 Galerkin Ritz 投影误差的严格分析(该误差由一个对偶问题推导得出),Ritz 投影误差估计值在能量规范中的超收敛性导致了最优 L2 误差估计值。为了证明我们的理论发现,我们进行了一些数值实验,其中利用了 Oseen 迭代来处理非线性耦合项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizer-free weak Galerkin method and its optimal L2 error estimates for the time-dependent Poisson—Nernst–Planck problem
This paper concerns a backward Euler stabilizer-free weak Galerkin finite element method (SFWG-FEM) for the time-dependent Poisson–Nernst–Planck (TD-PNP) problem. The scheme we propose utilizes spaces Pk(K), Pk(e), [Pj(K)]2 to approximate the interior, edge, and discrete weak gradient spaces on each element K and edge eK, respectively. The proposed method is in a simple format similar to the regular finite element method, compatible with polygonal meshes, flexible in approximation function space, and unconditionally stable in time. Based on a rigorous analysis of a weak Galerkin Ritz projection error, which is derived by a dual problem, the superconvergence of the Ritz projection error estimates in energy norm results in optimal L2 error estimates. Several numerical experiments are conducted to demonstrate our theoretical findings, where Oseen iteration is utilized for the nonlinear coupling terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信