{"title":"非均匀变分积分的向量最小值的局部有界性","authors":"Zhang Aiping, Feng Zesheng, Gao Hongya","doi":"10.1016/j.jmaa.2024.129074","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the local boundedness of vectorial local minimizers for a specific class of integral functionals with rank-one convex integrands under appropriate structural assumptions. Our method adapts the renowned De Giorgi‘s iteration technique and employs a suitable Caccioppoli-type inequality. Our findings are applicable to polyconvex integrals<span><span><span><math><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>{</mo><munderover><mo>∑</mo><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></munderover><mi>λ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>}</mo></mrow><mi>d</mi><mi>x</mi></math></span></span></span> with suitable <span><math><mi>λ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>,</mo><mi>r</mi><mo>></mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129074"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local boundedness for vectorial minimizers of non-uniform variational integrals\",\"authors\":\"Zhang Aiping, Feng Zesheng, Gao Hongya\",\"doi\":\"10.1016/j.jmaa.2024.129074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish the local boundedness of vectorial local minimizers for a specific class of integral functionals with rank-one convex integrands under appropriate structural assumptions. Our method adapts the renowned De Giorgi‘s iteration technique and employs a suitable Caccioppoli-type inequality. Our findings are applicable to polyconvex integrals<span><span><span><math><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>{</mo><munderover><mo>∑</mo><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></munderover><mi>λ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>}</mo></mrow><mi>d</mi><mi>x</mi></math></span></span></span> with suitable <span><math><mi>λ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>,</mo><mi>r</mi><mo>></mo><mn>1</mn></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"544 2\",\"pages\":\"Article 129074\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2400996X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2400996X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们在适当的结构假设下,为一类具有秩一凸积分的特定积分函数建立了向量局部最小值的局部有界性。我们的方法改编了著名的 De Giorgi 迭代技术,并采用了合适的 Caccioppoli 型不等式。我们的发现适用于具有合适的 λ(x),μ(x)>0 和 p,r>1 的多凸积分∫Ω{∑α=1Nλ(x)|Duα|p+μ(x)|Du|r}dx。
Local boundedness for vectorial minimizers of non-uniform variational integrals
We establish the local boundedness of vectorial local minimizers for a specific class of integral functionals with rank-one convex integrands under appropriate structural assumptions. Our method adapts the renowned De Giorgi‘s iteration technique and employs a suitable Caccioppoli-type inequality. Our findings are applicable to polyconvex integrals with suitable and .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.