Zhongmei Tian , Wei Shi , Xin Li , Yonghui Park , Zhiyu Jiang , Ji Wu
{"title":"仅在海流条件下采用共用系泊的漂浮式海上风力涡轮机的数值模拟","authors":"Zhongmei Tian , Wei Shi , Xin Li , Yonghui Park , Zhiyu Jiang , Ji Wu","doi":"10.1016/j.renene.2024.121918","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, with the continuous development of offshore wind power, reducing construction costs has become one of the key issues. Among them, the mooring system cost accounts for about 20%–30 % of the entire floating offshore wind turbine investment. The concept of shared mooring systems can potentially reduce the cost of floating offshore wind farms (FOWF). In this paper, research is carried out on the dynamic response of an FOWF under representative current conditions of the South China Sea. The comparative analysis focuses on the motion response of a single-spar Floating Offshore Wind Turbine (FOWT)and a dual-spar FOWF. A sensitivity analysis was performed on the length of the shared mooring line. The NREL 5-MW wind turbine with a spar platform is taken as a basis FOWT model for this work. The frequency-domain hydrodynamics is computed based on potential flow theory. The time domain analysis was simulated in a software for marine operations: SIMA(DNV). The viscous effect on the floater is modeled by the drag term in Morison's equation and the hydrodynamic force acting on the mooring line is computed using Morison's equation. Based on the finite element method, the mooring line is defined by a sequence of segments with homogeneous cross-sectional properties. The result shows that with the increase of the current return period, the two platforms move synchronously, and the movement increases almost linearly. Moreover, the motion response of the shared mooring platform is smaller than that of the single mooring platform under the same conditions, especially in the vertical direction. This paper contributes to improved fundamental understanding of shared mooring systems under complex marine environmental loads.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"238 ","pages":"Article 121918"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulations of floating offshore wind turbines with shared mooring under current-only conditions\",\"authors\":\"Zhongmei Tian , Wei Shi , Xin Li , Yonghui Park , Zhiyu Jiang , Ji Wu\",\"doi\":\"10.1016/j.renene.2024.121918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, with the continuous development of offshore wind power, reducing construction costs has become one of the key issues. Among them, the mooring system cost accounts for about 20%–30 % of the entire floating offshore wind turbine investment. The concept of shared mooring systems can potentially reduce the cost of floating offshore wind farms (FOWF). In this paper, research is carried out on the dynamic response of an FOWF under representative current conditions of the South China Sea. The comparative analysis focuses on the motion response of a single-spar Floating Offshore Wind Turbine (FOWT)and a dual-spar FOWF. A sensitivity analysis was performed on the length of the shared mooring line. The NREL 5-MW wind turbine with a spar platform is taken as a basis FOWT model for this work. The frequency-domain hydrodynamics is computed based on potential flow theory. The time domain analysis was simulated in a software for marine operations: SIMA(DNV). The viscous effect on the floater is modeled by the drag term in Morison's equation and the hydrodynamic force acting on the mooring line is computed using Morison's equation. Based on the finite element method, the mooring line is defined by a sequence of segments with homogeneous cross-sectional properties. The result shows that with the increase of the current return period, the two platforms move synchronously, and the movement increases almost linearly. Moreover, the motion response of the shared mooring platform is smaller than that of the single mooring platform under the same conditions, especially in the vertical direction. This paper contributes to improved fundamental understanding of shared mooring systems under complex marine environmental loads.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"238 \",\"pages\":\"Article 121918\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148124019864\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124019864","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Numerical simulations of floating offshore wind turbines with shared mooring under current-only conditions
In recent years, with the continuous development of offshore wind power, reducing construction costs has become one of the key issues. Among them, the mooring system cost accounts for about 20%–30 % of the entire floating offshore wind turbine investment. The concept of shared mooring systems can potentially reduce the cost of floating offshore wind farms (FOWF). In this paper, research is carried out on the dynamic response of an FOWF under representative current conditions of the South China Sea. The comparative analysis focuses on the motion response of a single-spar Floating Offshore Wind Turbine (FOWT)and a dual-spar FOWF. A sensitivity analysis was performed on the length of the shared mooring line. The NREL 5-MW wind turbine with a spar platform is taken as a basis FOWT model for this work. The frequency-domain hydrodynamics is computed based on potential flow theory. The time domain analysis was simulated in a software for marine operations: SIMA(DNV). The viscous effect on the floater is modeled by the drag term in Morison's equation and the hydrodynamic force acting on the mooring line is computed using Morison's equation. Based on the finite element method, the mooring line is defined by a sequence of segments with homogeneous cross-sectional properties. The result shows that with the increase of the current return period, the two platforms move synchronously, and the movement increases almost linearly. Moreover, the motion response of the shared mooring platform is smaller than that of the single mooring platform under the same conditions, especially in the vertical direction. This paper contributes to improved fundamental understanding of shared mooring systems under complex marine environmental loads.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.