R. Aakash, Kavyarathna, Nagananda G S, Kavya T R, Roopa Reddy, K.U. Minchitha, S. Swetha, Sandeep Suryan
{"title":"协同混合:用 Talaromyces atroroseus 色素合成的姜黄素负载银纳米粒子用于生物评估","authors":"R. Aakash, Kavyarathna, Nagananda G S, Kavya T R, Roopa Reddy, K.U. Minchitha, S. Swetha, Sandeep Suryan","doi":"10.1016/j.plana.2024.100120","DOIUrl":null,"url":null,"abstract":"<div><div>Metallic silver, particularly in the form of silver nanoparticles (AgNPs), has gained renewed attention as a powerful antimicrobial solution. In the present investigation, AgNP was synthesized using pigments produced by <em>Talaromyces atroroseus</em>, and Curcumin was loaded onto these AgNP to evaluate their potent antimicrobial, anti-inflammatory, antioxidant and anticancer activities. The maximal biosynthesis of silver nanoparticles (AgNP) was achieved at an optimized precursor concentration of 6 mM silver nitrate (AgNO₃) and a reducing agent concentration of 0.5 g/L fungal pigment. The incorporation efficiency of curcumin onto AgNP was determined to be 11 %. Comprehensive characterization of both curcumin-loaded and unloaded AgNPs was performed using EDS, SEM, FTIR and XRD. Antibacterial assays revealed that both formulations exhibited antimicrobial properties, with the curcumin-loaded AgNPs displaying significantly enhanced inhibitory effects, particularly against <em>Staphylococcus aureus</em>, showing an inhibition zone of 16 ± 0.33 mm. Furthermore, curcumin-loaded AgNPs demonstrated moderate antioxidant activity, with a 36.32 % free radical scavenging rate and an IC<sub>50</sub> of 71.9 µg mL<sup>−1</sup>. The nanoparticles also exhibited potent anti-inflammatory properties, achieving 84.05 % inhibition of inflammation and an IC<sub>50</sub> of 96.69 µg mL<sup>−1</sup>. Notably, curcumin-loaded AgNPs demonstrated cytotoxicity in 100 µg mL<sup>−1</sup> of the concentration tested on lung cancer cell line (A549) at 96 hrs. These results suggest that the extended incubation hours or increasing the concentrations of the AgNPs could be lethal concentrations that could completely inhibit the proliferation of lung cancer cells. However, further validation in <em>in-vivo</em> models for toxicity and clearance of AgNPs from the system has to be studied. The observed synergistic effects of biosynthesized curcumin-loaded AgNPs suggest a promising alternative to conventional antibiotic therapies.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100120"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic blend: Curcumin-loaded silver nanoparticles synthesized from Talaromyces atroroseus pigment for bio evaluation\",\"authors\":\"R. Aakash, Kavyarathna, Nagananda G S, Kavya T R, Roopa Reddy, K.U. Minchitha, S. Swetha, Sandeep Suryan\",\"doi\":\"10.1016/j.plana.2024.100120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metallic silver, particularly in the form of silver nanoparticles (AgNPs), has gained renewed attention as a powerful antimicrobial solution. In the present investigation, AgNP was synthesized using pigments produced by <em>Talaromyces atroroseus</em>, and Curcumin was loaded onto these AgNP to evaluate their potent antimicrobial, anti-inflammatory, antioxidant and anticancer activities. The maximal biosynthesis of silver nanoparticles (AgNP) was achieved at an optimized precursor concentration of 6 mM silver nitrate (AgNO₃) and a reducing agent concentration of 0.5 g/L fungal pigment. The incorporation efficiency of curcumin onto AgNP was determined to be 11 %. Comprehensive characterization of both curcumin-loaded and unloaded AgNPs was performed using EDS, SEM, FTIR and XRD. Antibacterial assays revealed that both formulations exhibited antimicrobial properties, with the curcumin-loaded AgNPs displaying significantly enhanced inhibitory effects, particularly against <em>Staphylococcus aureus</em>, showing an inhibition zone of 16 ± 0.33 mm. Furthermore, curcumin-loaded AgNPs demonstrated moderate antioxidant activity, with a 36.32 % free radical scavenging rate and an IC<sub>50</sub> of 71.9 µg mL<sup>−1</sup>. The nanoparticles also exhibited potent anti-inflammatory properties, achieving 84.05 % inhibition of inflammation and an IC<sub>50</sub> of 96.69 µg mL<sup>−1</sup>. Notably, curcumin-loaded AgNPs demonstrated cytotoxicity in 100 µg mL<sup>−1</sup> of the concentration tested on lung cancer cell line (A549) at 96 hrs. These results suggest that the extended incubation hours or increasing the concentrations of the AgNPs could be lethal concentrations that could completely inhibit the proliferation of lung cancer cells. However, further validation in <em>in-vivo</em> models for toxicity and clearance of AgNPs from the system has to be studied. The observed synergistic effects of biosynthesized curcumin-loaded AgNPs suggest a promising alternative to conventional antibiotic therapies.</div></div>\",\"PeriodicalId\":101029,\"journal\":{\"name\":\"Plant Nano Biology\",\"volume\":\"10 \",\"pages\":\"Article 100120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Nano Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773111124000639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111124000639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synergistic blend: Curcumin-loaded silver nanoparticles synthesized from Talaromyces atroroseus pigment for bio evaluation
Metallic silver, particularly in the form of silver nanoparticles (AgNPs), has gained renewed attention as a powerful antimicrobial solution. In the present investigation, AgNP was synthesized using pigments produced by Talaromyces atroroseus, and Curcumin was loaded onto these AgNP to evaluate their potent antimicrobial, anti-inflammatory, antioxidant and anticancer activities. The maximal biosynthesis of silver nanoparticles (AgNP) was achieved at an optimized precursor concentration of 6 mM silver nitrate (AgNO₃) and a reducing agent concentration of 0.5 g/L fungal pigment. The incorporation efficiency of curcumin onto AgNP was determined to be 11 %. Comprehensive characterization of both curcumin-loaded and unloaded AgNPs was performed using EDS, SEM, FTIR and XRD. Antibacterial assays revealed that both formulations exhibited antimicrobial properties, with the curcumin-loaded AgNPs displaying significantly enhanced inhibitory effects, particularly against Staphylococcus aureus, showing an inhibition zone of 16 ± 0.33 mm. Furthermore, curcumin-loaded AgNPs demonstrated moderate antioxidant activity, with a 36.32 % free radical scavenging rate and an IC50 of 71.9 µg mL−1. The nanoparticles also exhibited potent anti-inflammatory properties, achieving 84.05 % inhibition of inflammation and an IC50 of 96.69 µg mL−1. Notably, curcumin-loaded AgNPs demonstrated cytotoxicity in 100 µg mL−1 of the concentration tested on lung cancer cell line (A549) at 96 hrs. These results suggest that the extended incubation hours or increasing the concentrations of the AgNPs could be lethal concentrations that could completely inhibit the proliferation of lung cancer cells. However, further validation in in-vivo models for toxicity and clearance of AgNPs from the system has to be studied. The observed synergistic effects of biosynthesized curcumin-loaded AgNPs suggest a promising alternative to conventional antibiotic therapies.