管道内壁减薄微波检测综合研究:不连续性、反射和信号

IF 4.1 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Weiying Cheng
{"title":"管道内壁减薄微波检测综合研究:不连续性、反射和信号","authors":"Weiying Cheng","doi":"10.1016/j.ndteint.2024.103269","DOIUrl":null,"url":null,"abstract":"<div><div>Microwave inspection of internal pipe wall thinning (PWT) relies on reflections occurring at locations where inner radius changes. Reflections also occur at other discontinuities, such as air gaps and the pipe end, which seriously contaminate the measurement signals for PWT and pose challenges to PWT characterization. This study clarified the mechanism of reflections from different types of discontinuities using theoretical, analytical, and numerical solutions. By establishing a formula to calculate the characteristic impedance of a circular waveguide, we were able to analytically compute the scattering parameter <span><math><mrow><msub><mi>S</mi><mn>11</mn></msub></mrow></math></span> for a waveguide with a full-circumferential PWT, providing insights for PWT characterization. Furthermore, we defined the number of repetitions per unit of frequency as <span><math><mrow><mi>Ω</mi></mrow></math></span> and represented the measured <span><math><mrow><msub><mi>S</mi><mn>11</mn></msub></mrow></math></span> signals in the <span><math><mrow><mi>Ω</mi><mo>−</mo></mrow></math></span> domain. The correspondence between <span><math><mrow><mi>Ω</mi></mrow></math></span> and traveling distance enables localization of discontinuities without considering frequency-dependent propagation velocity. The <span><math><mrow><mi>Ω</mi></mrow></math></span> domain representations primarily associated with PWT were isolated by band and converted back to the frequency domain, allowing for more effective PWT characterization.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"149 ","pages":"Article 103269"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive study on microwave inspection of internal pipe wall thinning: Discontinuities, reflections and signals\",\"authors\":\"Weiying Cheng\",\"doi\":\"10.1016/j.ndteint.2024.103269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microwave inspection of internal pipe wall thinning (PWT) relies on reflections occurring at locations where inner radius changes. Reflections also occur at other discontinuities, such as air gaps and the pipe end, which seriously contaminate the measurement signals for PWT and pose challenges to PWT characterization. This study clarified the mechanism of reflections from different types of discontinuities using theoretical, analytical, and numerical solutions. By establishing a formula to calculate the characteristic impedance of a circular waveguide, we were able to analytically compute the scattering parameter <span><math><mrow><msub><mi>S</mi><mn>11</mn></msub></mrow></math></span> for a waveguide with a full-circumferential PWT, providing insights for PWT characterization. Furthermore, we defined the number of repetitions per unit of frequency as <span><math><mrow><mi>Ω</mi></mrow></math></span> and represented the measured <span><math><mrow><msub><mi>S</mi><mn>11</mn></msub></mrow></math></span> signals in the <span><math><mrow><mi>Ω</mi><mo>−</mo></mrow></math></span> domain. The correspondence between <span><math><mrow><mi>Ω</mi></mrow></math></span> and traveling distance enables localization of discontinuities without considering frequency-dependent propagation velocity. The <span><math><mrow><mi>Ω</mi></mrow></math></span> domain representations primarily associated with PWT were isolated by band and converted back to the frequency domain, allowing for more effective PWT characterization.</div></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"149 \",\"pages\":\"Article 103269\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524002342\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002342","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

管道内壁减薄(PWT)的微波检测依赖于内半径变化处发生的反射。反射也会发生在其他不连续处,如气隙和管端,这严重污染了 PWT 的测量信号,给 PWT 的表征带来了挑战。本研究通过理论、分析和数值求解,阐明了不同类型不连续面的反射机理。通过建立圆波导特性阻抗的计算公式,我们能够分析计算出全圆周压电陶瓷波导的散射参数 S11,为压电陶瓷特性分析提供了启示。此外,我们还将单位频率的重复次数定义为 Ω,并用 Ω 域表示测得的 S11 信号。Ω和移动距离之间的对应关系使我们能够在不考虑频率相关传播速度的情况下定位不连续性。主要与 PWT 有关的 Ω 域表示按频带分离,并转换回频域,从而更有效地描述 PWT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive study on microwave inspection of internal pipe wall thinning: Discontinuities, reflections and signals
Microwave inspection of internal pipe wall thinning (PWT) relies on reflections occurring at locations where inner radius changes. Reflections also occur at other discontinuities, such as air gaps and the pipe end, which seriously contaminate the measurement signals for PWT and pose challenges to PWT characterization. This study clarified the mechanism of reflections from different types of discontinuities using theoretical, analytical, and numerical solutions. By establishing a formula to calculate the characteristic impedance of a circular waveguide, we were able to analytically compute the scattering parameter S11 for a waveguide with a full-circumferential PWT, providing insights for PWT characterization. Furthermore, we defined the number of repetitions per unit of frequency as Ω and represented the measured S11 signals in the Ω domain. The correspondence between Ω and traveling distance enables localization of discontinuities without considering frequency-dependent propagation velocity. The Ω domain representations primarily associated with PWT were isolated by band and converted back to the frequency domain, allowing for more effective PWT characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ndt & E International
Ndt & E International 工程技术-材料科学:表征与测试
CiteScore
7.20
自引率
9.50%
发文量
121
审稿时长
55 days
期刊介绍: NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信